Уже в последующее десятилетие спрос на углеродное волокно заметно возрос: ведь оно отличается идеальным набором свойств — весит вдвое меньше стекловолокна, не ржавеет, обладает высокой прочностью и теплостойкостью, гасит вибрации и к тому же не горит. В продольном направлении это волокно имеет отрицательный коэффициент теплового расширения. Это значит, что при нагревании оно становится толще и короче. По удельному значению механических свойств, то есть по отношению модуля упругости или прочности к плотности, оно превосходит все известные жаростойкие волокнистые материалы.
Примечательно, что в отсутствие кислорода прочность углеродного волокна практически не меняется даже при нагревании до 1600—2000 градусов Цельсия. Поэтому его используют прежде всего в качестве теплоизоляционного материала. Впрочем, на воздухе его температура эксплуатации не превышает 300 — 400°C. Для того чтобы избежать его окисления в среде, содержащей кислород, можно покрыть волокно тонким слоем карбида, например карбида кремния, или нитридом бора.
Углеродное волокно отличается также высокой химической стойкостью, оно выдерживает воздействие концентрированных кислот и щелочей, а потому пригодно, например, для фильтрации агрессивных веществ или очистки газов от дисперсных примесей. Оно устойчиво к действию света и проникающей радиации; его гигроскопичность невысока, хотя и поглощает водяные пары из атмосферы.
Изготавливают углеродное волокно, главным образом, из следующих органических материалов (так называемых прекурсов).
Целлюлоза (вискоза). Углеродное волокно, полученное из целлюлозы или вискозы, стоит дешево, но его структура далека от идеальной, а потому по своим качествам оно уступает другим разновидностям углеволокна. Так, его прочность и упругость сравнительно невысоки. То же касается его электрической и тепловой проводимости. Зато данный материал хорош для изготовления нитей накаливания, поскольку его электрическое сопротивление, наоборот, велико. Вообще же углеродное волокно, полученное из целлюлозы, обычно используют в качестве изоляционного материала, работающего при высокой температуре.
Полиакрилонитрил (ПАН). Большая часть углеродных волокон, применяемых в современной промышленности, изготовлена из полиакрилонитрила. Особенность этого типа волокон — высокая прочность на растяжение, вот только стоимость их тоже высока, что обусловлено стоимостью исходного материала. Впервые подобные волокна были получены на рубеже 1950 — 1960-х годов в СССР, а затем и в Японии.
Пек (смола). Годятся фенольные смолы, каменноугольные и нефтяные пеки, причем какой бы материал мы ни выбрали, он будет заметно дешевле, чем полиакрилонитрил. Однако затраты на его очистку и переработку так высоки, что стоимость полиакрилонитрилового углеродного волокна окажется, в конечном счете, ниже. К тому же углеродные волокна, полученные из пека, характеризуются низкой прочностью на разрыв и изгиб.
Обычно углеродное волокно получают термической обработкой исходных органических волокон. Их нагревают в азотной или аргоновой атмосфере до температуры порядка 800—1500 градусов Цельсия. Подобный процесс называют карбонизацией, ведь после такой обработки в материале остаются в основном атомы углерода. Содержание углерода в готовом волокне составляет 85 процентов и выше. Это приводит к существенному повышению прочности и жесткости материала.
При нагреве свыше 1800 градусов Цельсия происходит графитизация волокна. Его структура становится близка идеальной структуре графита, отличаясь лишь расстоянием между отдельными слоями углерода. Содержание углерода в волокне, прошедшем подобную обработку, достигает почти 99 процентов.
Готовое углеродное волокно — диаметр отдельных волокон равен примерно 5 — 8 микрометрам — выпускают в виде нитей, жгутов, лент, тканых и нетканых материалов. Все они отличаются высокими механическими характеристиками, а потому их используют в качестве упрочняющего наполнителя пластмассы. Связующим веществом в такой пластмассе — ее называют углепластиком — служит обычно эпоксидная, феноло-формальдегидная или полиэфирная смола.
Свойства углепластика можно заранее смоделировать. Любая деталь, изготовленная из этого материала, в какой-то мере уникальна. Важнейшее значение имеет расположение волокон. Ведь углепластик может быть как изотропным, так и анизотропным материалом, и его механические свойства зависят от того, как ориентированы отдельные волокна. У анизотропного материала, например, прочность вдоль волокон очень высока, зато в поперечном направлении мала. Так что конструкторы должны знать, каким нагрузкам будет подвергаться изделие и в каком направлении те будут действовать. А вот у изотропного материала отдельные волокна равномерно распределены во всех направлениях. Поэтому показатели его прочности в любом направлении примерно равны, и показатели эти невысоки. Так что, изотропный углепластик имеет малое промышленное значение.