Нетрудно видеть, что все факты и закономерности, выглядевшие странными и «неправильными» с точки зрения СТЭ, находят естественное объяснение в рамках этих концепций. Виды, не имеющие полового размножения, не «размываются», потому что каждый вид — это локальный оптимум анатомо-физиологического устройства. Число таких оптимумов ограничено, они стабильны и четко отделены друг от друга, и это никак не зависит от наличия или отсутствия полового процесса[2]
. Крупные существа эволюционируют быстрее мелких, потому что они всегда экологически более уязвимы, их виды чаще вымирают, освобождая экологические ниши и открывая тем самым возможность для изменений другим видам. Наконец, постоянно возникающие в эволюции параллелизмы отражают то, что на любую открывшуюся эволюционную возможность всегда находится несколько претендентов.И тут вновь раздается вопрос, с которого начинался этот материал: так что же, все трудности остались позади?
Экосистемная и эпигенетическая теории только формируются, можно не сомневаться, что со временем они тоже столкнутся с трудностями и противоречиями, подобными тем, с которыми сейчас сталкивается СТЭ. Но помимо затруднений, которые испытывает та или иная конкретная теория, есть еще как минимум одна принципиальная трудность: разрыв между нашими знаниями об элементарных эволюционных процессах и о макроэволюции.
Сегодня нам известны механизмы микроэволюционных изменений (прежде всего видообразования) — настолько, что можно даже попытаться воспроизвести эти изменения экспериментально или, по крайней мере, создать их модель. С другой стороны, сегодня мы немало знаем об эволюционной истории крупных групп и жизни на Земле в целом. Но как связать одно с другим? Сколько бы новых находок ни сделали палеонтологи, они никогда не смогут точно доказать, что именно такое-то ископаемое существо было предком, скажем, всех моллюсков. В то же время все наши знания о генетических механизмах эволюции бессильны ответить на вопрос: какие гены и каким образом должны измениться, чтобы превратить продвинутого архозавра в примитивную птицу или папоротник — в семенное растение?
На первый взгляд может показаться, что эта трудность техническая, связанная с неполнотой наших знаний. Мол, найдем ископаемые останки еще нескольких переходных форм, узнаем побольше о связях между генами и морфологическими признаками — и состыкуем. На самом деле проблема тут не в нехватке фактов, а в методологическом разрыве: микроэволюцией занимаются науки экспериментальные, а макроэволюцией — исторические. Их методы имеют принципиально разную природу и вряд ли могут быть когда-нибудь полностью сведены одни к другим.
Это, однако, не означает, что любые попытки связать экспериментальное и историческое знание заведомо бесплодны. В последнее время, например, бурно развивается так называемая молекулярная филогения — направление, позволяющее по «разночтениям» в генетических текстах (см. заметку «Последняя альтернатива») восстановить последовательность отделения тех или иных групп от общего ствола, то есть макроэволюционных событий. Однако эта новая наука и ее отношения с традиционными биологическими дисциплинами — тема для отдельного разговора. Здесь же скажем лишь, что методы молекулярной филогении позволяют исследовать пути эволюции — но не ее механизмы.
Последняя альтернатива
Уже в 1924 году российский генетик Юрий Филипченко в своем обзоре «Эволюционная идея в биологии» заметил, что после щедрого урожая эволюционных концепций во второй половине XIX века в новом столетии их поток явно начал пересыхать. В самом деле, после 1920-х годов была выдвинута только одна эволюционная концепция, не являющаяся интерпретацией дарвинизма. Речь идет о теории «нейтральной эволюции», предложенной в 1968 году японским генетиком Мотоо Кимурой и независимо от него годом позже — американцами Джеком Кингом и Томасом Джуксом.
Все началось с того, что в аминокислотных последовательностях природных белков обнаружились многочисленные разночтения, не оказывавшие заметного влияния на функциональные свойства. Кимура предположил, что мутации, вызывающие такие замены, нейтральны (не повышают и не снижают жизнеспособность их носителей), а их закрепление в генотипе — результат не отбора, а чистого случая. Позиции нейтрализма укрепились еще сильнее, когда выяснилось, что самыми распространенными отличиями между генными текстами разных видов являются так называемые «синонимические замены» (замены нуклеотидов, не меняющие «смысла» кодона, — поскольку каждая аминокислота кодируется в среднем тремя разными кодонами), а также замены в некодирующих участках ДНК. Оба этих типа мутаций вообще не имеют фенотипического выражения и потому не могут контролироваться отбором.