Читаем 200 занимательных логических задач полностью

106. Конечно же, это рассуждение неверно. Видимость его правильности и убедительности создается за счет того, что в нем почти незаметно смешиваются и подменяются понятия «сутки» и «день», а вернее – «рабочий день». А это совершенно разные понятия, ведь сутки – это 24 часа, а рабочий день – это 8 часов. В году 365 суток, и это то время, в которое мы и работаем, и отдыхаем, и спим. В рассуждении же понятие «365 суток» подменяется понятием «365 дней» и, предполагается, что все эти дни (а на самом деле – сутки) заняты только работой. Далее из этих «365 дней» вычитается время, затрачиваемое на сон, на отдых и т. д., а это время надо вычитать не из дней (причем рабочих дней), а из суток. Тогда количество дней (рабочих) останется прежним, и недоразумения не возникнет.

107. Надо взять второй наполненный стакан слева и перелить его во второй пустой стакан справа, тогда наполненные и пустые стаканы будут чередоваться.

108. Рассуждение неверно. Говорить о том, что большее количество рабочих сможет построить дом намного быстрее, можно только в пределах целых дней, т. е. если измерять время работы днями. Если же измерять это время часами, а тем более минутами и секундами, то данная закономерность (больше рабочих – быстрее работа) не действует. Ошибка рассуждения заключается в том, что в нем смешиваются различные понятия, обозначающие разные временные интервалы. Понятие «день» почти незаметно подменяется понятием «час», «минута», «секунда», за счет чего и создается видимость правильности и доказанности данного рассуждения.

109. Это слово «неправильно». Оно всегда так и пишется – «неправильно». Эффект этой задачи-шутки заключается в том, что в ней слово «неправильно» употребляется в двух разных смыслах.

110. Попугай действительно может повторять каждое услышанное слово, но он глух и не слышит ни одного слова.

111. Конечно же, спичку, так как без нее нельзя зажечь ни свечу, ни керосиновую лампу. Вопрос задачи является двусмысленным, ведь его можно понимать как выбор между свечой и керосиновой лампой, а также можно понимать как последовательность в зажигании чего-либо (сначала спичка, потом – от нее – все остальное).

112. Диагональ кирпича является гипотенузой прямоугольного треугольника. Один катет этого треугольника равен высоте (или толщине) кирпича, а другой катет равен диагонали его поверхности. Эта диагональ, в свою очередь, является гипотенузой прямоугольного треугольника, катетами которого являются длина и ширина кирпича. Ее легко найти по теореме Пифагора. Зная величину этой диагонали и высоту (или толщину) кирпича по той же теореме легко найти его диагональ.

113. Может показаться, что Петр будет спать 14 часов, но на самом деле он сможет поспать всего 2 часа, потому что будильник прозвонит в девять часов вечера. Простой механический будильник не различает дня и ночи и всегда звонит в то время, на которое его поставили. Если бы это был какой-нибудь электронный будильник компьютерного типа, который можно программировать, тогда, конечно же, Петру удалось бы проспать с 7 вечера до 9 утра.

114. Логическая закономерность, что отрицание истины является ложью, а отрицание лжи – истиной действует только тогда, когда речь идет об одном и том же предмете. В данном случае речь должна идти об одном и том же предложении. Если бы это было так, то одно утверждение обязательно было бы истинным, а другое ложным или наоборот. Но в задаче речь идет о двух разных предложениях. Поэтому нет ничего удивительного в том, что они оба являются ложными.

115. Сумма восьми цифр, равная двум может получиться в том случае, если одна из этих цифр двойка, а остальные – нули. Такое восьмизначное число только одно. Это 20 000 000. Но сумма восьми цифр, равная двум также может получиться в том случае, если две из этих цифр единицы, а остальные нули. Таких восьмизначных чисел семь:

11 000 000

10 100 000

10 010 000

10 001 000

10 000 100

10 000 010

10 000 001

Итак, существует восемь восьмизначных чисел, сумма цифр которых равна двум.

116. Периметр фигуры – это сумма длин всех ее сторон. В данной фигуре 12 сторон. Если ее периметр равен 6, то одна сторона равна 6: 12 = 0,5. Фигура состоит из 5 одинаковых квадратов, со стороной 0,5. Площадь одного квадрата равна 0,5 · 0,5 = 0,25. Следовательно, площадь всей фигуры равна 0,25 · 5 = 1,25.

117. Затруднение при решении данной задачи может возникнуть только из-за запутанно сформулированного условия. Сама же задача очень проста. Требуется всего лишь записать математически то, что выражено в ней словами, т. е. распутать ее словесное условие. Сумма квадратов чисел 2 и 3 – это 22 + 32. Куб суммы квадратов чисел 2 и 3 – это (22 + 32)3. Сумма кубов этих чисел – 23 + 33. Квадрат этой суммы – (23 + 33)2. Надо найти разность первого и второго:

(22 + 32)3 – (23 + 33)2 = (4 + 9)3 – (8 + 27)2 = 133 – 352 = 2197–1225 = 972

118. Это число 2. Половина этого числа равна 1, а половина от половины этого числа (т. е. единицы) равна 0,5, т. е. тоже половине.

Перейти на страницу:

Похожие книги