Программное заявление компании Facebook гласит: «Дайте людям построить сообщество и объединить мир». В 2017 году организация ProPublica выяснила, что алгоритмы компании продавали рекламу, направленную на «противников евреев» и другие антисемитские группы. Facebook продавал рекламу, дискриминирующую пожилых людей, и рекламирует собственные вакансии в основном молодым людям. Сложно понять, как подобное ведение дел может помочь построить сообщество и объединить планету.
Устранение предвзятости
Устранить предубеждения очень хочется, но сделать это практически невозможно, если Amazon рекомендует вам книгу, match.com предлагает знакомства, а monster.com продвигает работу, которая может вам приглянуться. Выбор конкретной книги, человека или работы – это предвзятость. Фактически бо́льшая часть машинного обучения – это решение, какого рода предвзятостью наделить программу. Данный феномен часто называют индуктивной предвзятостью. Это набор предубеждений, которые используются программой для прогнозирования на основе ранее неизвестных входных данных.
Иногда предвзятость может быть даже желательной. Мы не против того, чтобы при принятии в университет отдавали предпочтении людям из бедных районов. Мы стараемся давать взаймы тем, кто, скорее всего, отдаст долг. Мы не против предубеждения программы-переводчика против сексизма в корпусе языка, которым она пользуется. Мы не против предвзятости автономных автомобилей, которая заставляла бы их уступать дорогу пешеходам и велосипедистам.
У нас есть инструменты для того, чтобы превратить предвзятость во что-то более приемлемое. Мы можем, например, попытаться улучшить точность наших алгоритмов. Возможно, нам необходимо давать машинам больше данных, добавлять дополнительные свойства или менять модель, чтобы улучшить их точность. Другой вариант – запрет некоторых ответов. Как мы видели ранее, Google запретил слово «горилла» в качестве тега для приложения «Google Фото». Однако проблема заключается в том, что завершенности этим не добьешься. Можно, конечно, попробовать решить проблему таким странным способом и составить список допустимых ответов. В таком случае, правда, можно многое пропустить.
Другой вариант решения проблемы заключается в том, чтобы удалить некоторые свойства из набора данных, в которых содержатся нежелательные предубеждения. Если вы не хотите, чтобы на кредитные решения влияла расовая принадлежность, – значит, нужно исключить параметр расы из входных данных. Однако этого вряд ли будет достаточно; как мы уже видели, в наборе данных может содержаться информация (как в случае с почтовым индексом), которая напрямую связана с расовой принадлежностью. Можно устранить и такие параметры, но такой подход отрицательно повлияет на точность. Мы также можем изменить сам набор входных данных. Если в этом наборе чересчур много мужчин, мы можем увеличить в нем количество женщин. Вероятно, набор данных может быть видоизменен так, чтобы быть репрезентативным для более широкого населения.
Наконец, последний инструмент в борьбе с предвзятостью – это осведомленность. Нет идеального способа обнаружить и искоренить предубеждения в системах ИИ. Однако без понимания того, что такая предвзятость там есть, ничего изменить не удастся.
Золотой век философии
Когда был золотой век философии? В те времена, когда Сократ, Аристотель и Платон заложили фундамент для науки? Или в годы жизни Декарта, которого многие считают отцом современной западной философии? А может, это были времена Конфуция и его учеников, чьи идеи до сих пор оказывают на нас влияние? Не поступай с другими так, как не хочешь, чтобы поступали с тобой. Однако я предполагаю, что золотой век философии только начинается.
Следующие несколько десятилетий будут продуктивным периодом в философии, так как перед нами стоит множество сложных этических проблем, требующих разрешения. Учитывая исполнительность компьютеров, нам необходимо будет четко сформулировать собственные ценности, чтобы доверить ИИ принятие решений, способных на нас повлиять. К 2062 году каждой крупной компании понадобится главный философский директор (chief philosophical officer), или ГДФ (СРО). Он будет помогать компании решать, каким образом должен вести себя ИИ. Область вычислительной этики расцветет, пока мы будем разбираться, как создать систему, которая следует общепринятым ценностям.
Недавно приятель спросил меня, как убедить своего ребенка изучать в университете не философию, а что-нибудь «более практическое». Я посоветовал ему похвалить выбор сына. В деловой сфере, политике и других важных областях катастрофически не хватает философов. Без них невозможно сделать так, чтобы системы ИИ в 2062 году транслировали человеческие ценности. А также невозможно быть уверенным в том, что homo digitalis этичнее homo sapiens.
7. Конец равенства