Как было указано выше, механизм работы магнитно-резонансного томографа основан на ядерно-магнитном резонансе атомов водорода вещества в сильном магнитном поле. В отличие от всех рентгенологических методов, в частности компьютерной томографии или обычного рентгена, магнитный резонанс не связан с работой проникающего излучения и поэтому по праву считается самым безопасным в настоящее время неинвазивным методом исследования. Физические принципы разработки МР-изображений дают возможность получить изображения не только костной ткани, но и мягких тканей сустава, таких как связки, хрящи, и даже мышечной ткани. Метод позволяет получить послойные изображения исследуемого органа с необходимым пространственным расположением слоев, дает возможность получать высококачественные рисунки головного, спинного мозга и других внутренних органов. Помимо этого, современные методики МРТ позволяют без вмешательства в организм исследовать не только строение органов, но и функциональную динамику происходящих в них процессов. Например, измерять скорость кровотока, тока ликвора (спинно-мозговой жидкости), определять уровень диффузии в тканях, даже наблюдать активацию зон коры головного мозга при функционировании органов, за которые отвечает данный участок коры. Применение магнитного резонанса с целью изучения этих параметров получило название функциональной МРТ.
За изобретение магнитно-резонасного метода диагностики в 2003 г. Питер Мэнсфилд и Пол Лотербур получили Нобелевскую премию. К сожалению, как и все в медицине, МРТ имеет свои противопоказания. В частности, метод противопоказан больным, страдающим клаустрофобией, а также пациентам с инородными металлическими предметами (искусственные металлические протезы, пулевые осколки, пейсмейкеры – водители сердечного ритма и т. п.).
Современные технологии и повсеместная компьютеризация предопределили появление такого метода, как виртуальная эндоскопия. Метод можно по праву назвать новейшим в инструментальной диагностике. Он позволяет получать трехмерное моделирование структур, которые визуализированы с помощью КТ или МРТ.
Глава 4. Инструментальные методы исследования органов мочевыделительной системы
Экскреторная урография
Это рентгенологическое исследование мочевой системы, которое основано на избирательной способности почек выделять введенные в кровь водорастворимые йодсодержащие вещества. Урография позволяет получить данные об анатомическом строении, функциональном состоянии органов мочевой системы и оценить моторную функцию мочевых путей. Исследование проводят при подозрении на поражение мочевыделительной системы. Урография противопоказана при инсульте, печеночной и почечной недостаточности, инфаркте миокарда.
Исследование проводится после обзорной рентгенографии мочевой системы и ультразвукового или радионуклидного сканирования. При этом необходима адекватная подготовка к этому исследованию. За сутки до исследования ограничивается прием пищи, содержащей клетчатку, проводится освобождение кишечника. За 10–20 мин. до урографии делают очистительную клизму. Внутривенно вводят 40 мл рентгеноконтрастного вещества (60–70 %-ного раствора йодамида, триомбраста, урографина). В процессе урографии осуществляют рентгенотелевизионную пиелоуретероскопию в двух положениях больного с регистрацией результатов в форме видеозаписи или на серии урограмм, крупнокадровых флюорограмм, кинопленке. В случае нормального функционирования почек обследование заканчивается через 30–35 мин. после введения рентгеноконтраста. Снимки можно выполнить через 2 ч или даже через сутки. Диагностическая ценность метода увеличивается проведением специальной методики – фармакоурографии, при этом можно оценить резервные возможности почек и выявить дилатацию верхних мочевых путей. Через 15–20 мин. после введения рентгеноконтрастного вещества внутривенно вводят 40 мг фуросемида, растворенного в 9 %-ном растворе хлорида натрия. С помощью данной методики можно определить скрытые нарушения выделения мочи из верхних мочевых путей.
Пиелография