Читаем 6a. Электродинамика полностью

§ 2. Поля точечного заряда, движущегося с постоянной скоростью

Итак, мы нашли потенциалы точечного заряда, движущегося с постоянной скоростью. Для практических целей нам нужно найти поля. Равномерно движущиеся заряды попадаются бук­вально на каждом шагу, скажем проходящие через камеру Вильсона космические лучи или даже медленно движущиеся электроны в проводнике. Так что давайте хотя бы посмотрим, как выглядят эти поля для любых скоростей заряда, даже для скоростей, близких к скорости света, но предположим при этом, что ускорение вообще отсутствует. Это очень интересный вопрос.

Поля мы будем находить по обычным правилам, исходя из потенциалов


Возьмем сначала Ez:


Но компонента Azравна нулю, а дифференцирование выра­жения (26.1) для j дает



(26.2)

Аналогичная процедура для Еуприводит к


(26.3)

Немного больше работы с x-компонентой. Производная от j более сложна, да и Ахне равна нулю. Давайте сначала вычислим —дj/дх:


(26.4)


А затем продифференцируем Ахпо t:

(26.5)

И, наконец, складывая их, получаем



(26.6)

Бросим на минуту заниматься полем Е, а сначала найдем В. Для его z-компоненты мы имеем

Но, поскольку Аyравна нулю, у нас остается только одна производная. Заметьте, однако, что Ахпросто равна vj, а производная (d/dy)vjравна —vEy . Так что



(26.7)

Аналогично,


или


(26.8)

Наконец, компонента Вхравна нулю, поскольку равны нулю и Ауи Аг. Таким образом, магнитное поле можно запи­сать в виде


(26.9)

Теперь посмотрим, как выглядят наши поля. Мы попытаемся нарисовать картину поля вокруг положения заряда в настоящий момент. Конечно, влияние заряда в каком-то смысле происхо­дит из запаздывающего положения, но, поскольку мы имеем дело со строго заданным движением, запаздывающее положение однозначно определяется положением в настоящий момент. При постоянной скорости заряда поля лучше связывать с теку­щими координатами, ибо компоненты поля в точке х, у, z за­висят только от (х-vt), у и z, которые являются компонентами вектора перемещения rpиз постоянного положения заряда в точку (х, у, z) (фиг. 26.3).


Фиг. 26.3. Электрическое поле заряда, движущегося с постоянной скоростью, направ­лено по радиусу от истинного положения заряда.

Рассмотрим сначала точки, для которых z= 0. Поле Е в этих точках имеет только х- и y-компоненты. Из уравнений (26.3) и (26.6) видно, что отношение этих компонент как раз равно отно­шению х- и y-компонент вектора перемещения. Это означает, что направление Е совпадает с направлением rp, как это пока­зано на фиг. 26.3. Тот же результат остается справедливым и для трех измерений, поскольку Ezпропорционально z. Короче говоря, электрическое поле заряда радиально и силовые линии расходятся от заряда так же, как и в стационарном случае. Конечно, вследствие наличия дополнительного фактора (1-v2) поле не будет тем же самым, что в стационарном случае. Но здесь мы можем увидеть нечто очень интересное. Дело обстоит так, как будто вы пишете закон Кулона в особой системе коорди­нат, «сжатой» вдоль оси x множителем Ц(1-v2) Если вы сделаете это, то силовые линии впереди и позади заряда разойдутся, а по бокам сгустятся (фиг. 26.4).

Если мы связываем обычным образом напряженность поля Е с плотностью силовых линий, то видим, что поле впереди и по­зади заряда ослабевает, но зато по бокам становится сильнее, т. е. как раз то, о чем говорит нам уравнение. Когда вы изме­ряете напряженность поля под прямыми углами к линии дви­жения, т. е. при (x-vt) = 0, расстояние от заряда будет равно y2+z2, а полная напряженность Ц(E2x+E2y) в этих точках равна



(26.10)

Она, как и в случае кулонова поля, пропорциональна квад­рату расстояния, но еще усиливается постоянным множителем 1/Ц(1-v2), который всегда больше единицы. Таким образом, по бокам движущегося заряда электрическое поле сильнее, чем это следует из закона Кулона. Фактически увеличение по срав­нению с кулоновым потенциалом равно отношению энергии частицы к ее массе покоя.


Впереди заряда (или позади него) у и z равны нулю, а поэ­тому

(26.11)

Снова поле обратно пропорционально расстоянию от заряда, но теперь оно зарезается множителем (1-v2), что согласуется с картиной силовых линий. Если v/c мало, то v2/c2еще меньше, и действие (1-v2) почти незаметно, поэтому мы снова возвра­щаемся к закону Кулона. Но если частица движется со скоро­стью, близкой к скорости света, то поле перед частицей сильно уменьшается, а поле сбоку чудовищно возрастает.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература