В этом частном случае гамильтониан равен
Итак, мы знаем, какой вид имеет гамильтониан, когда магнитное поле направлено по z, и знаем еще энергии стационарных состояний.
А теперь пусть поле не направлено
по z. Каков теперь гамильтониан? Как меняются матричные элементы, когда поле не направлено по z? Мы сделаем предположение, что для членов гамильтониана имеется своего рода принцип суперпозиции. Точнее, мы предположим, что если два магнитных поля налагаются одно на другое, то члены гамильтониана просто складываются: если нам известно Hijдля поля, состоящего из одной только компоненты Bz, и известно Нijдля одной только Вх, то Hij для поля с компонентами Bz, Bxполучится простым сложением. Это бесспорно верно, если рассматриваются только поля в направлении z: если удвоить Bz, то удвоятся и все Нij. Итак, давайте допустим, что Н линейно по полю В. Чтобы найти Hijдля какого угодно магнитного поля, больше ничего и не нужно.Пусть у нас есть постоянное поле В. Мы бы могли
провести нашу ось z в направлении поля и обнаружили бы два стационарных состояния с энергиями ±mB. Простой выбор другого направления осей не изменил бы физики дела. Наше описание стационарных состояний стало бы иным, но их энергии по-прежнему были бы ±mB, т. е.
Дальше все уже совсем легко. У нас есть формулы для энергий. Нам нужен гамильтониан, линейный по В
х, Вyи Bz, который даст именно такие энергии, если применить нашу общую формулу (8.3). Задача — найти гамильтониан. Прежде всего заметим, что энергия расщепляется симметрично и ее среднее значение есть нуль. Взглянув на (8.3), мы сразу же увидим, что для этого требуетсяН
22=-H11.(Заметьте, что это подтверждается тем, что нам уже известно при В
x=Вy=0; в этом случае Н11=-mBzи H22=mBz.) Если теперь приравнять энергии из (8.3) к тому, что нам известно из (8.19), то получится
(Мы использовали также тот факт, что Н
21=Н*12, так что H12H21 может быть записано в виде |Н12|2.) Опять в частном случае поля в направлении z это даст
откуда | H
12| в этом частном случае равно нулю, что означает, что в H12не может войти член с Вz. (Вы помните, что мы говорили о линейности всех членов по Вх, Вyи Bz.)Итак, пока мы узнали, что в Н
11и H22 входят члены с Вz, а в H12 и H21 — нет. Можно попробовать угадать формулы, которые будут удовлетворять уравнению (8.20), написавH
11=-mВz,H
22=mBzи
Оказывается, что никак иначе
этого сделать нельзя!«Погодите,— скажете вы,— H
12 по В не линейно. Из (8.21) следует, что H12=mЦ(В2x+В2y)». Не обязательно. Есть и другая возможность, которая уже линейна, а именноН
12=m(Вx+iBy).На самом деле таких возможностей не одна, в общем случае можно написать
где d — произвольная фаза.
Какой же знак и какую фазу мы обязаны взять? Оказывается, что можно выбрать любой знак и фазу тоже любую, а физические результаты от этого не изменятся. Так что выбор — это вопрос соглашения. Еще до нас кто-то решил ставить знак минус и брать еi
d=-1. Мы можем делать так же и написать
(Кстати, эти соглашения связаны и согласуются с тем произволом в выборе фаз, который мы использовали в гл. 4.) Полный гамильтониан для электрона в произвольном магнитном поле, следовательно, равен
уравнения для амплитуд С
1 и С2 таковы:
Итак, мы открыли «уравнения движения спиновых состояний» электрона в магнитном поле. Мы угадали их, пользуясь некоторыми физическими аргументами, но истинная проверка всякого гамильтониана заключается в том, что он обязан давать предсказания, согласующиеся с экспериментом. Из всех сделанных проверок следует, что эти уравнения правильны. Более того, хотя все наши рассуждения относились к постоянному полю, написанный нами гамильтониан правилен и тогда, когда магнитные поля меняются со временем. Значит, мы теперь можем применять уравнения (8.23) для решения всевозможных интересных задач.
§ 7. Вращающийся электрон в магнитном поле