Читаем 8a. Квантовая механика I полностью

В этом частном случае гамильтониан равен

Итак, мы знаем, какой вид имеет гамильтониан, когда магнит­ное поле направлено по z, и знаем еще энергии стационарных состояний.

А теперь пусть поле не направлено по z. Каков теперь га­мильтониан? Как меняются матричные элементы, когда поле не направлено по z? Мы сделаем предположение, что для членов гамильтониана имеется своего рода принцип суперпозиции. Точнее, мы предположим, что если два магнитных поля нала­гаются одно на другое, то члены гамильтониана просто склады­ваются: если нам известно Hijдля поля, состоящего из одной только компоненты Bz, и известно Нijдля одной только Вх, то Hij для поля с компонентами Bz, Bxполучится простым сло­жением. Это бесспорно верно, если рассматриваются только поля в направлении z: если удвоить Bz, то удвоятся и все Нij. Итак, давайте допустим, что Н линейно по полю В. Чтобы найти Hijдля какого угодно магнитного поля, больше ничего и не нужно.

Пусть у нас есть постоянное поле В. Мы бы могли провести нашу ось z в направлении поля и обнаружили бы два стационарных состояния с энергиями ±mB. Простой выбор другого направления осей не изменил бы физики дела. Наше описание стационарных состояний стало бы иным, но их энергии по-прежнему были бы ±mB, т. е.

Дальше все уже совсем легко. У нас есть формулы для энер­гий. Нам нужен гамильтониан, линейный по Вх, Вyи Bz, который даст именно такие энергии, если применить нашу общую фор­мулу (8.3). Задача — найти гамильтониан. Прежде всего за­метим, что энергия расщепляется симметрично и ее среднее значение есть нуль. Взглянув на (8.3), мы сразу же увидим, что для этого требуется

Н22=-H11.

(Заметьте, что это подтверждается тем, что нам уже известно при Вxy=0; в этом случае Н11=-mBzи H22=mBz.) Если теперь приравнять энергии из (8.3) к тому, что нам известно из (8.19), то получится

(Мы использовали также тот факт, что Н21=Н*12, так что H12H21 может быть записано в виде |Н12|2.) Опять в частном случае поля в направлении z это даст

откуда | H12| в этом частном случае равно нулю, что означает, что в H12не может войти член с Вz. (Вы помните, что мы гово­рили о линейности всех членов по Вх, Вyи Bz.)

Итак, пока мы узнали, что в Н11и H22 входят члены с Вz, а в H12 и H21 — нет. Можно попробовать угадать формулы, которые будут удовлетворять уравнению (8.20), написав

H11=-mВz,

H22=mBz

и

Оказывается, что никак иначе этого сделать нельзя!

«Погодите,— скажете вы,— H12 по В не линейно. Из (8.21) следует, что H12=mЦ(В2x2y)». Не обязательно. Есть и дру­гая возможность, которая уже линейна, а именно

Н12=m(Вx+iBy).

На самом деле таких возможностей не одна, в общем случае можно написать

где d — произвольная фаза.

Какой же знак и какую фазу мы обязаны взять? Оказы­вается, что можно выбрать любой знак и фазу тоже любую, а физические результаты от этого не изменятся. Так что выбор — это вопрос соглашения. Еще до нас кто-то решил ставить знак минус и брать еid=-1. Мы можем делать так же и написать

(Кстати, эти соглашения связаны и согласуются с тем про­изволом в выборе фаз, который мы использовали в гл. 4.) Полный гамильтониан для электрона в произвольном маг­нитном поле, следовательно, равен

уравнения для амплитуд С1 и С2 таковы:

Итак, мы открыли «уравнения движения спиновых состояний» электрона в магнитном поле. Мы угадали их, пользуясь некото­рыми физическими аргументами, но истинная проверка всякого гамильтониана заключается в том, что он обязан давать предсказания, согласующиеся с экспериментом. Из всех сделанных проверок следует, что эти уравнения правильны. Более того, хотя все наши рассуждения относились к постоянному полю, написанный нами гамильтониан правилен и тогда, когда маг­нитные поля меняются со временем. Значит, мы теперь можем применять уравнения (8.23) для решения всевозможных инте­ресных задач.

§ 7. Вращающийся электрон в магнитном поле

Перейти на страницу:

Похожие книги