Пример первый: пусть сначала имеется постоянное поле в направлении z. Ему соответствуют два стационарных состояния с энергиями ±mB
z. Добавим небольшое поле в направлении х. Тогда уравнения получатся такими же, как в нашей старой задаче о двух состояниях. Опять, в который раз, получается знакомый уже нам переброс, и уровни энергии немного расщепляются. Пусть, далее, x-компонента поля начнет меняться во времени, скажем, как coswt. Тогда уравнения станут такими, как для молекулы аммиака в колеблющемся электрическом поле (см. гл. 7). И тем же способом, что и прежде, вы можете рассчитать процесс во всех деталях. При этом вы увидите, что колеблющееся поле приводит к переходам от +z-состояния к —z-состоянию и обратно, если только горизонтальное поле колеблется с частотой, близкой к резонансной, w0=2mBz/h. Это приводит к квантовомеханической теории явлений магнитного резонанса, описанной нами в гл. 35 (вып. 7).Можно еще сделать мазер, в котором используется система со спином 1
/2. Прибор Штерна — Герлаха создает пучок частиц, поляризованных, скажем, в направлении +z, и они потом направляются в полость, находящуюся в постоянном магнитном поле. Колеблющиеся в полости поля, взаимодействуя с магнитным моментом, вызовут переходы, которые будут снабжать полость энергией.Рассмотрим теперь второй пример. Пусть у нас имеется магнитное поле В, направление которого характеризуется полярным углом 6 и азимутальным углом j (фиг. 8.10).
Фиг. 8.10. Направление В определяется полярным углом q и азимутальным углом j.
Допустим еще, что имеется электрон, спин которого направлен по полю. Чему равны амплитуды С
1и С2для этого электрона? Иными словами, обозначая состояние электрона |y>, мы хотим написать
где C
1и С2 равны
а |1
> и |2>обозначают то же самое, что раньше обозначалось |+> и |-> (по отношению к выбранной нами оси z).Ответ на этот вопрос также содержится в наших общих уравнениях для систем с двумя состояниями. Во-первых, мы знаем, что раз спин электрона параллелен В, то электрон находится в стационарном состоянии с энергией Е
I=-mB. Поэтому и c1 и С2 должны изменяться как [см. уравнение (7.18)]; и их коэффициенты а
1и а2 даются формулой (8.5):
Вдобавок a
1 и а2 должны быть нормированы так, чтобы было |a|2 +|а2|2=1. Величины Н11и H12 мы можем взять из (8.22), используя равенстваB
z=Bcosq, Вх=Вsinqcosj, Ву=Вsinqsinj.Тогда мы имеем
Кстати, скобка во втором уравнении есть просто,
так что проще писать
Подставляя эти матричные элементы в (8.24) и сокращая на -mB,
находим
Зная это отношение и зная условие нормировки, можно найти и а
1, и а2. Сделать это нетрудно, но мы сократим путь, прибегнув к одному трюку. Известно, что1-cosq=2sin2
(q/2) и sinq=2sin(q/2)cos(q/2). Значит, (8.27) совпадает с
Один из ответов, следовательно, таков:
Он удовлетворяет и уравнению (8.28), и условию
Вы знаете, что умножение a
1 и а2 на произвольный фазовый множитель ничего не меняет. Обычно формуле (8.29) предпочитают более симметричную запись, умножая на e'f'2. Принято писать так:
Это и есть ответ на наш вопрос. Числа а
1и а2 — это амплитуды того, что электрон будет замечен спином вверх или вниз (по отношению к оси z), если известно, что его спин направлен вдоль оси (q,j). [Амплитуды C1и С2равны просто a1 и a2, умноженным на Заметьте теперь занятную вещь. Напряженность В
магнитного поля нигде в (8.30) не появляется. Тот же результат разумеется, получится в пределе, если поле В устремить к нулю Это означает, что мы дали общий ответ на вопрос, как представлять частицу, спин которой направлен вдоль произвольной оси. Амплитуды (8.30) — это проекционные амплитуды для частиц со спином 1/2, подобные проекционным амплитудам для частиц со спином 1, приведенным в гл. 3 [уравнения (3.38)]. Теперь мы сможем находить для фильтрованных пучков частиц со спином 1/2 амплитуды проникновения через тот или иной фильтр Штерна — Герлаха.Пусть |+z> представляет состояние со спином, направленным по оси z
вверх, а |-z> — состояние со спином вниз. Если | +z'> представляет состояние со спином, направленным вверх по оси z', образующей с осью z углы q и j, то в обозначениях гл. 3 мы имеем
Эти результаты эквивалентны тому, что мы нашли из чисто геометрических соображений в гл. 4 [уравнение (4.36)]. (Если вы в свое время решили пропустить гл. 4, то вот перед вами один из ее существенных результатов.)