Читаем Алексей Васильевич Шубников (1887—1970) полностью

Следующий раздел монографии посвящен фигурам без особенной точки, в первую очередь бордюрам «как группам без особенных точек, но с особенной полярной плоскостью и единственной осью переноса» [132, с. 72]. Всего выведено 7 групп G2I. Определив ленты G321 как «фигуры с особенной (полярной или неполярной) плоскостью, параллельно которой проходит ось переносов» [132, с. 76, 77], автор далее выводит 31 группу G321 и при этом отмечает, что существенно различных лент, рассматриваемых как стержневые группы, только 22, поскольку стержень — это «фигура без особенных точек и плоскостей, но с единственным особенным направлением» [132, с. 81]. Попутно в этом параграфе рассмотрена типология винтовых осей симметрии, включая винтовые оси с бесконечным элементарным переносом. На основе комбинирования дискретных и непрерывных элементов симметрии автором разработана типология предельных групп симметрии стержней, в том числе 7 групп, порожденных 5 предельными точечными и дискретной трансляцией; бесконечное разнообразие стержневых групп с непрерывной трансляцией и дискретной точечной и с обоими непрерывными порождающими элементами. Здесь же доказывается, что любое симметричное преобразование пространства может быть реализовано отражениями максимум в четырех плоскостях, которые сами по себе не обязаны быть реальными плоскостями симметрии. Это выводится из утверждения Г. В. Вульфа о главенствующей роли плоскости симметрии среди прочих симметричных преобразований или теоремы Болдырева. На основе этого фундаментального положения предлагается еще одно определение симметрии: «Симметричной называется всякая фигура, которая может совмещаться сама с собой в результате одного или нескольких последовательно произведенных отражений в плоскостях» [32, с. 97].

Далее автор переходит к выводу сначала 17 двумерных групп G2, а затем приводит список всех 8G групп симметрии слоев G32, проиллюстрированных рисунками, кочующими из работы в работу с того момента, когда они впервые были нарисованы Вебером.

А. В. Шубников иллюстрирует группы симметрии либо различными орнаментальными мотивами, либо интерференционными картинами. В этом же параграфе дана фактически сводка параллелогонов, заполняющих плоскость параллельными переносами и смежных по целым ребрам, планигонов, заполняющих плоскость в любом положении, полных и неполных плоских изотонов :— многоугольников, в каждой вершине которых сходится одно и то же число ребер, причем многоугольники заполняют плоскость без промежутков. Эта тема в творчестве А. В. Шубникова имеет свою предысторию и заслуживает отдельного рассмотрения [132, с. 58]. Далее автор получает 7 групп симметрии плоских односторонних семиконтинуумов, а затем переходит к слоевым группам и соответствующим им континуумам и семиконтинуумам (31 группа). При весьма схематичном рассмотрении федоровских групп, что обусловлено объемом книги и ее ориентацией на непрофессионалов, уделено внимание плотнейшим упаковкам (по Н. В. Белову), теории параллелоэдров и стереоэдров, определению групп симметрии континуумов и семиконтинуумов.

Анализируя монографии по теории симметрии, можно сказать, что «Симметрия» А. В. Шубникова — явление уникальное, поскольку, если не считать работ по орнаментам или по проявлению упорядоченных форм в природе, собственно симметрии и ее проявлениям в природе в самом широком смысле этого слова посвящены, пожалуй, лишь работы его учителя Г. В. Вульфа. Только в 50—60-х годах нашего столетия появились многочисленные публикации по этому вопросу, из которых сопоставимой можно считать только вышедшую в 1968 г. работу Г. Вейля «Симметрия», а также расширенное и дополненное новое издание книги А. В. Шубникова, вышедшее в соавторстве с В. А. Копциком [344].

В 1940 г. увидела свет написанная совместно с Г. Б. Бокием и Е. Е. Флинтом книга А. В. Шубникова «Основы кристаллографии» [134], завершившая представительный ряд фундаментальных трудов наших соотечественников: Е. С. Федорова, В. И. Вернадского, Б. Н. Делоне, А. Д. Александрова, безвременно скончавшегося В. В. Доливо-Добровольского, А. К. Болдырева и др.

Начиная с монографии [132], А. В. Шубников систематически дополняет и совершенствует разработанную им систему обозначений групп симметрии., отличавшуюся от интернациональной символики, введенной впервые К. Германном в 1929 г. и Ш. Могеном в 1931 г.

Рассмотрим последовательно развитие ортогональной симметрии в трудах А. В. Шубникова и его коллег, генезис антисимметрии и ее расширений, развитие теории симметрии подобия.

В Атласе кристаллографических групп симметрии [150] впервые в отечественной литературе приведен полный иллюстрированный каталог всех в то время известных дискретных групп ортогональной симметрии, причем даже в самих названиях отражены физические приложения рассматриваемых групп.

Перейти на страницу:

Все книги серии Научно-биографическая литература

Похожие книги