Читаем Алиса в стране математики полностью

Некоторые из этих множеств не имеют общих элементов — например, множество молочных поросят и множество бродячих собак. А другие множества, наоборот, имеют общие элементы — скажем, множество бродячих собак и множество животных, буйствующих, как в безумии: ведь среди бродячих собак есть и бешеные. Если два множества не имеют общих элементов, говорят, что эти множества не пересекаются, а если общие элементы есть, то говорят, что множества пересекаются. Слово «пересечение» связано с геометрическими фигурами — если две фигуры пересекаются, у них есть общие точки (хотя бы одна!).

Например, эти две прямые пересекаются в одной точке:

А эти два круга имеют бесконечно много общих точек:

Если же две фигуры не пересекаются, у них нет ни одной общей точки. Таковы, например, параллельные прямые:

или эти два квадрата:

Множество общих элементов двух множеств называется пересечением этих множеств. Например, пересечение множеств всех девочек и множеств всех Алис — это девочки, которых зовут Алисами. Вы уже догадались, конечно, что пересечение множеств и произведение множеств, о котором беседовали Алиса и Гусеница — это одно и то же!

Сумма множеств тоже имеет второе название — «объединение множеств». Например, объединением множеств приручённых животных и сказочных животных будет множество, состоящее из животных, каждое из которых приручённое или сказочное (при этом оно может быть и приручённым и сказочным одновременно!). К такому множеству принадлежат, скажем, дрессированные собачки (приручённые животные), Белый Кролик с часами в жилетном кармане (сказочное животное), а также дрессированные драконы (приручённые и сказочные одновременно). А вот, например, динозавры, действительно жившие на Земле миллионы лет назад, к такому множеству не принадлежат (во-первых, приручить их тогда ещё было некому, а, во-вторых, хотя они и были похожи на драконов, они всё-таки были не сказочными, а настоящими!).

Множество можно задавать не только указанием общего свойства всех предметов, входящих в это множество (как мы это делали до сих пор). Есть и другой способ: просто перечислить все элементы множества (помните множество, состоящее из Алисы и Гусеницы?).

Для того, чтобы легче было разбираться в том, как связаны различные множества, то есть каковы их объединение и пересечение, математик Эйлер (о нём мы уже писали) предложил обозначать множества кругами — эти круги называются обычно «кругами Эйлера». Например, для «слишком страшной истории», которую Герцогиня рассказывала Младенцу, круги Эйлера выглядят так:

Горизонтальными линиями здесь заштриховано «множество пиратов, потерявших левый глаз», вертикальными — «множество пиратов, потерявших правый глаз», а двойная штриховка обозначает пересечение этих множеств, то есть «множество пиратов, потерявших оба глаза».

Раз для множеств можно определить сложение и умножение (пусть даже и с несколько необычными свойствами), значит, можно построить и «алгебру множеств». Эта алгебра действительно была построена, и оказалось, что она в точности совпадает с той «алгеброй логики», которую построил Буль (с ним мы тоже уже знакомы)!

Совпадение это, конечно, не случайно: дело в том, что логика имеет дело с высказываниями, а каждое высказывание — это утверждение о каких-то множествах. Возьмём, например, такое высказывание: «Миша хочет шоколадку или заводную машину!». Здесь речь идёт о предмете, который принадлежит сумме множеств «шоколадки» и «заводные машины». Предположим, выбрана заводная машина.

— Какую машину Миша хочет?

— Красную и большую!

Тут уже говорится о произведении двух множеств: «красных заводных машин» и «больших заводных машин»!

Пока учёные ограничивались конечными множествами, то есть множествами, содержащими конечное число элементов, никаких неожиданностей не возникало: использование множеств позволяло только, как говорил Эйлер, «облегчать рассуждения».

А вот когда стали изучать бесконечные множества, начались чудеса! К ним мы сейчас и перейдём.

НЕБЫЛИЦА О КАНТОРЕ, В КОТОРОЙ ВСЁ — ПРАВДА!

Перейти на страницу:

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг
Путеводитель по поэзии А.А. Фета
Путеводитель по поэзии А.А. Фета

В одной книге впервые анализируются все лирические стихотворения А. А. Фета (1820–1892), включенные в Образовательный стандарт для средних школ и в Программу для поступающих в МГУ имени М. В. Ломоносова: «Кот поет, глаза прищуря…», «Облаком волнистым…», «Шепот, робкое дыханье…», «Это утро, радость эта…», «Сияла ночь, луной был полон сад. Лежали…» и др. Каждая из четырнадцати глав представляет собой разбор одного из стихотворений. Рассматриваются мотивная структура, образный строй, лексика, особенности звукописи, метрики и ритмики фетовских текстов.Для учителей школ, гимназий и лицеев, старшеклассников, абитуриентов, студентов и преподавателей-филологов и всех почитателей русской литературной классики.SummaryА. М. Ranchin. A Guide to А. А. Fet's Verse: a manual. Moscow: Moscow University Press, 2010. — (The School for Thoughtful Reading Series).It is for the first time that all A. A. Fet's (1820–1892) lyrical poems included in the Educational Standard for secondary schools and the Obligatory Reading List for school-leavers taking entrance exams for Lomonosov Moscow State University are analyzed in one book: 'The cat is purring and its eyes are squinting…'(Kot poyot, glaza prishchurya….); 'A wavy cloud… '(Oblakom volnistym…); 'Whispers, bashful breathing…'(Shopot, robkoye dykhanie…); 'This morning and this joy…'(Eto utro, radost' eta…); 'The night was shining, garden full of moon…' (Siyala noch, lunoy byl polon sad. Lezhali…) and others. Each of the fourteen chapters contains analysis of one poem. Things under consideration are: the motif structure, the structure of imagery, vocabulary, peculiarities of sound symbolism, metrics and rhythmics of Fet's texts. When called for, some of Fet's biographical data are given — the ones reflected in his poems.For teachers of schools, lyceums and gymnasia, high school pupils, school-leavers taking university entrance exams, students and professors of philology and all the lovers of Russian classical literature.

Андрей Михайлович Ранчин

Детская образовательная литература / Литературоведение / Книги Для Детей / Образование и наука