Когда Ампер перебрался в Париж в 1804 году, ему было 29 лет, жизнь закалила его. Однако в столице его ожидала не только блестящая научная карьера, но и новые несчастья. Он все время вспоминал о своем деревенском детстве и так и не привык к городской жизни.
Тем не менее Ампер прожил в Париже до самой своей смерти в 61 год. В своих письмах ученый писал, что уютно себя чувствует только в Отей, парижском квартале, который пересекает Сена, напоминающая ему о лионской Соне. Покинуть родной город Ампера заставили две главные причины: боль от смерти Жюли и стремление выстроить научную карьеру.
В письме от 21 июля 1805 года Ампер писал Элизе Каррон, своей свояченице:
Элиза поддерживала Ампера в его первый год в Париже, но в 1808 году она также скоропостижно умерла. Это письмо нужно понимать следующим образом: Ампер нуждался в поддержке, однако в математической среде ее найти не мог. Впрочем, ученый сообщал Элизе в том же письме, что после переезда в Париж написал два доклада, которые были опубликованы в газете, издаваемой Политехнической школой. Он умел сосредотачиваться на работе даже в моменты отчаяния, и это еще раз напоминает о том, каким необыкновенным человеком был Ампер. В то время его математические работы были связаны с уравнениями в частных производных.
В 1806 году Ампер опубликовал один из своих докладов о производных функциях с длинным названием: «Исследование некоторых аспектов теории производных функций, ведущее к новому доказательству рядов Тейлора и конечному выражению бесконечно ничтожных показателей при прерывании рядов через какой бы то ни было показатель». Теорема Тейлора была сформулирована английским математиком Бруком Тейлором (1685-1731) в 1712 году.
В работе Ампера ощущалась нехватка метода системной организации определений, аксиом и теорем, который в дальнейшем разовьет один из его коллег, математик Огюстен Луи Коши (1789-1857).
Эту работу можно рассматривать как набросок к более позднему исследованию уравнений в частных производных. Ее целью было изменение подхода Лагранжа, по поводу которого в Политехнической школе в 1799 году состоялось множество конференций. Лагранж опубликовал свой труд в 1804 году под названием «Лекции об исчислении функций». Он определял производную функции через ее разложение в ряд Тейлора и рассчитал выражение для остаточного члена, приблизив функцию через усечение разложения до данного члена. Другими словами, Лагранж использовал понятие производной функции, не вводя понятия предела.
Ампер дополнил подход Лагранжа: он дал новое определение производной и предложил новую формулу для разложения в ряд Тейлора, по-прежнему не используя понятия предела.
Определение, предложенное Ампером в его статье 1806 года, основывается, как мы можем видеть, на алгебре.
Производная функции f(x) — функция от х следующего вида:
f(x + i)-f(x)/i
Она всегда лежит между двумя значениями производной функции, взятыми между х и х + г/, какими бы ни были x и y.
Андре-Мари Ампер называл частной функцией приращения частное, возникающее в данном ниже определении. Прежде чем дать определение в тексте, он объяснял, откуда появлялись эти выражения:
«Эта функция (приращения), которая очевидным образом зависит от ƒ(x) и которую господин Лагранж назвал вследствие этого ее производной функцией, является, как мы знаем, очень важной в математике, особенно в геометрии, и механике; мы запишем ее, как делал этот блестящий математик, в виде ƒ(x), и нашей первой целью будет доказательство ее существования».