Читаем Аналитики. Никомахова этика полностью

Но если имеются геометрические вопросы, то разве имеются негеометрические вопросы [в геометрии]? И вопросы, возникающие в каждой науке по незнанию, – по какому виду незнания они геометрические? Далее: есть ли силлогизм, построенный по незнанию, силлогизм, состоящий из противолежащих друг другу [посылок], или паралогизм, но относящийся все же к геометрии? Или он из области другого искусства? Например, в отношении геометрии вопрос музыки не есть геометрический вопрос. А мнение о том, что параллельные линии пересекаются, – относится ли оно каким-то образом к геометрии и каким-то другим образом не к геометрии? Ведь [ «негеометрическое»] имеет двоякий смысл, подобно несоразмерному: с одной стороны, оно негеометрическое, потому что не содержит [ничего относящегося к геометрии], подобно тому как несоразмерное – [к соразмерности]; с другой стороны, потому, что содержит [геометрическое] в искаженном виде. И именно это незнание, исходящее из таких начал, противоположно [науке геометрии]. В математике с паралогизмом дело обстоит иначе; средний термин всегда берется двояко, а именно [больший крайний термин] высказывается обо всем среднем, а с другой стороны, сам средний [высказывается] обо всем другом [крайнем] (однако в сказуемом не говорится «всякое»). В математике же [отношение среднего термина к крайним] можно как бы видеть мышлением. Но в [диалектических] рассуждениях это остается незамеченным, [например]: есть ли каждый круг (kyklos) фигура? Если же его начертить, то это ясно. А [цикл] эпических стихотворений тоже есть круг? Очевидно, что нет.

Однако, если [меньшая] посылка основана на наведении, нет надобности приводить против этого [способа доказательства] какое-либо возражение, ибо, сколь [ясно, что в науке] нет такой посылки, которая не относилась бы ко многим случаям (ибо иначе она не могла бы относиться и ко всем случаям, силлогизм ведь строится из общих [посылок]), столь же ясно, что нет и [соответствующего] возражения. Ибо посылки и возражения суть одного и того же порядка; в самом деле, приводимое возражение само может стать посылкой – или доказывающей, или диалектической.

Случается, что некоторые рассуждают не по правилам силлогизма, из-за того что принимают то, что следует из обоих [крайних терминов], как это делает, например, и Кеней, чтобы доказать, что огонь разрастается в геометрической прогрессии, потому что, как он говорит, огонь разрастается быстро и эта прогрессия так же. Но в таком случае нет силлогизма; [он будет], если [сказать так]: геометрическая прогрессия следует из наиболее быстро развивающейся прогрессии, и из [наличия] огня в его движении следует наиболее быстро развивающаяся прогрессия. Таким образом, иногда невозможно выводить заключение из принятых [посылок]; иногда же это возможно, но не видят [этой возможности]. Если бы было невозможно из ложных [посылок] доказывать истинное, то раскрытие было бы легким, ибо необходимо имела бы место обоюдность. В самом деле, пусть А есть нечто существующее; если же оно существует, существует также то, о чем я знаю, что оно существует, например Б. Из Б я докажу, что есть А. Однако больше всего такая обоюдность имеет место в математике, потому что здесь не берут [как средний термин] ничего привходящего (и этим она отличается от диалектического способа рассуждения), а берут лишь определения.

Умножается [знание] не через [новые] средние термины, а посредством добавления [крайних], например А [приписывается] Б, Б – В, а В – Д, и так далее до бесконечности. [Знание умножается] и вширь, как, например, А [сказывается] и о В, и о Е; например, есть конечное или бесконечное число, скажем А, конечное нечетное число – Б, а В – некоторое нечетное число; тогда А [сказывается] о В. И пусть Д обозначает конечное четное число, Е – некоторое четное число; тогда А [сказывается] о Е.

Глава тринадцатая

[Отличие доказательства и знания о том, что данная вещь есть, от доказательства и знания о том, почему она есть]

Перейти на страницу:

Похожие книги

История Франции. С древнейших времен до Версальского договора
История Франции. С древнейших времен до Версальского договора

Уильям Стирнс Дэвис, профессор истории Университета штата Миннесота, рассказывает в своей книге о самых главных событиях двухтысячелетней истории Франции, начиная с древних галлов и заканчивая подписанием Версальского договора в 1919 г. Благодаря своей сжатости и насыщенности информацией этот обзор многих веков жизни страны становится увлекательным экскурсом во времена антики и Средневековья, царствования Генриха IV и Людовика XIII, правления кардинала Ришелье и Людовика XIV с идеями просвещения и величайшими писателями и учеными тогдашней Франции. Революция конца XVIII в., провозглашение республики, империя Наполеона, Реставрация Бурбонов, монархия Луи-Филиппа, Вторая империя Наполеона III, снова республика и Первая мировая война… Автору не всегда удается сохранить то беспристрастие, которого обычно требуют от историка, но это лишь добавляет книге интереса, привлекая читателей, изучающих или увлекающихся историей Франции и Западной Европы в целом.

Уильям Стирнс Дэвис

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Образование и наука
История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература