При анализе предела наталкиваются на то, что Кантор называет «точкой скопления». Он определяет ее посредством того факта, что всегда на каком-то расстоянии от данной точки наталкиваются на точку, которая относится к ряду; из этого непосредственно следует, что эти «наиболее сближенные» точки существуют в бесконечном числе и нет еще более близких. Пытаясь установить существенные свойства континуума, Кантор пришел к следующим характеристикам, которые, правда, в отличие от того, что он полагал, и как мы также продемонстрируем, не могут использоваться для «определения» континуума: все точки континуума являются точками скопления, и все точки скопления относятся к единству или к совокупности самого континуума. Говоря научным языком: единство континуума – это единство полной когерентности или плотности. Между какими-нибудь двумя точками одного континуума с необходимостью имеется одна (непрерывная) необходимость в соотношении с другой. Не существует двух точек, которые граничат друг с другом; они отделены друг от друга подобной же бездной бесконечности точек. Здесь дихотомия появляется в последний раз, и здесь мы с ней также окончательно расстаемся. Ведь если здесь, как показано, существует общая для всех математических дисциплин проблема, и трудности, которая она в себе заключает, не суть противоречия, но только парадоксы, то нам нет необходимости учитывать их в позитивном анализе движения. Повсюду, где мы оперируем такими понятиями, как расстояние, прямая, путь, тело, мы находимся в сфере, где проблема Зенона считается разрешенной, поскольку иначе все эти понятия, прямая, путь, расстояние, тело, не имели бы смысла. Эта проблема относится к гораздо более глубокому слою – слою чистой математики. Для измерения, в котором движение вообще принимается в расчет, проблема Зенона уже не существует.
§ 13. Бесконечное и континуум
Мы не можем перейти к анализу движения, не сказав несколько слов о континууме. Кантор, который с такой силой и точностью обнаружил невозможность определить бесконечное, странным образом заблуждался, когда полагал, что континуум невозможно реконструировать из простых элементов, и пытался дать конструктивное определение континуума, или, скорее, непрерывного количества. Вместе с Расселом он надеялся найти такое определение. Выше мы уже его упоминали. По нашему мнению, такое определение можно понимать только как развитие простого буквального смысла «непрерывной величины», но отнюдь не в качестве конструктивного определения. Идея непрерывности, континуума – это