Для Колмогорова характерно повышенное внимание к различению в объектах и процессах конструктивного и неконструктивного. Конструктивными объектами с необходимостью являются объекты, участвующие в конструктивных процессах, а также выражения какого-либо языка. При этом выражение языка служит, как правило, именем неконструктивного объекта. Последнее наблюдение естественно приводит к понятию нумерации, служащему математическим выражением общей идеи соответствия между именами (в математической терминологии – «номерами») и их значениями в рамках какой-либо системы имён (в математической терминологии – «нумерации»); основы теории нумераций были сформулированы Колмогоровым в 1954 г. Интерес к конструктивным процессам привёл Колмогорова к алгоритмической проблематике. В частности, в 1960-х гг. Колмогоров предложил новые, алгоритмические, подходы к обоснованию теории вероятностей, что позволило в конечном счёте дать строгое определение понятию случайности для индивидуального объекта (что недоступно традиционной теории вероятностей).
В кибернетике Колмогоров проанализировал роль дискретного (в противопоставлении непрерывному) и отстаивал принципиальную возможность возникновения у машин мышления, эмоций, целенаправленной деятельности и способности конструировать ещё более сложные машины. В информатике Колмогоров в 1950-х гг. предложил общее определение понятия алгоритма, а в 1960-х гг., опираясь на алгоритмические представления, создал теорию сложности конструктивных объектов. Эта теория, в свою очередь, была им применена для построения нового обоснования теории информации.
Выдающуюся роль в логике играют две статьи Колмогорова: «О принципе tertium non datur» (Математический сборник. 1925. Т. 32. № 4. С. 668–677) и «Zur Deutung der intuitionistischen Logik» (Mathematische Zeitschrift. 1932. Bd. 35. S. 58–65); обе перепечатаны в книге его избранных трудов «Математика и механика»[177]
(вторая в русском переводе – «К толкованию интуиционистской логики»). Обе объединены общей идеей – навести мост между интуиционистской логикой и традиционной, или классической, логикой, причём сделать это средствами, свободными как от идеологии интуиционизма, так и от крайностей теоретико-множественного догматизма. Именно, в статье 1925 г. предлагается такая интерпретация «классической» логики, которая приемлема с точки зрения интуиционизма; напротив, в статье 1932 г. предлагается такая интерпретация интуиционистской логики, которая приемлема с классических позиций.В статье «О принципе…» Колмогоров принимает предпринятую главой интуиционизма Брауэром критику традиционной логики; при этом Колмогоров обнаруживает в последней ещё один уязвимый, но обойдённый критикой Брауэра логический принцип, а именно принцип, выражаемый аксиомой