Задаваться же вопросом, что именно из математики, причём неприкладной, должно входить в общеобязательный культурный минимум, вряд ли стоит, потому что однозначного ответа на него не найти. Каждый должен определять этот минимум для себя. Задача общества – предоставить каждому индивидууму ту информацию о математических понятиях, идеях и методах, из которой можно было бы отобрать этот субъективный минимум. Вообще, приобретение знаний есть дело добровольное, и насилие тут неуместно. На ум приходит замечательное высказывание Сухарто (второго президента Индонезии – не путать с первым её президентом Сукарно): «В наше время чрезвычайно трудно заставить кого-либо сделать что-либо добровольно». Тем не менее дальше вам встретятся рекомендации о включении в математический минимум тех или иных знаний; это отнюдь не категорическое требование, а скорее, примеры и материал для дальнейшего обсуждения. Школьная программа по математике – слишком болезненная тема, чтобы её здесь затрагивать (хотя она не может не волновать, поскольку касается миллионов наших детей). Ограничусь тем, что скажу: хорошо бы в этой программе устранить перекос в сторону вычислений и уделить больше внимания качественным моментам, с вычислениями непосредственно не связанным.
Замечу в заключение, что математика составляет часть мировой культуры и благодаря своему этическому аспекту. Хотя существование такового может показаться странным, он есть. Математика не допускает лжи, т. е. ложных утверждений. Более того, математика требует, чтобы утверждения не просто провозглашались, но доказывались. Она учит задавать вопросы и требовать разъяснений, если ответ оказался тёмен. Она по природе демократична, её демократизм обусловлен характером математических истин. Их непреложность не зависит от того, кто их провозглашает – академик или школьник. Вот поучительный эпизод из жизни механико-математического факультета (знаменитого мехмата) Московского университета, относящийся к концу 1940-х гг. Великий Колмогоров читает специальный (т. е. необязательный) курс по теории меры. Он объявляет некоторую теорему и говорит, что, поскольку дальнейшее изложение на неё не опирается, он её доказывать не будет, а просит поверить на слово. Один из слушателей, третьекурсник, строит опровергающую конструкцию и в перерыве показывает её лектору. Вторую половину лекции Колмогоров начинает с изложения этой конструкции, а третьекурсника приглашает к себе на дачу, где производит в ученики.
Здесь прошу читателя остановиться и подумать, следует ли ему читать дальше. А помочь в этом раздумье способно мнение другого читателя, содержащееся в приложении к этой главе, которое помещено в конце очерка. Того, кто решит продолжить чтение, прошу прочесть (или перечесть) тот абзац предисловия, где говорится о точности и понятности.
Глава 2
Теорема Пифагора и теорема Ферма
Весьма и весьма поучительным, а потому достойным войти в «джентльменский набор» математических фактов нам представляется знание того, почему треугольник со сторонами 3, 4, 5 называют
Но почему треугольник со сторонами 3, 4, 5 окажется прямоугольным? Боюсь, пытаясь ответить на этот вопрос, большинство читателей сошлётся на теорему Пифагора: ведь три в квадрате плюс четыре в квадрате равно пяти в квадрате. Однако теорема Пифагора утверждает, что если треугольник прямоугольный, то сумма квадратов двух его сторон равна квадрату третьей. Здесь же используется теорема,