Наконец, о равенстве 3² + 4² = 5². Если положительные числа a, b, c
обладают тем свойством, что a² + b² = c², то, по обратной теореме Пифагора, они представляют собою длины сторон некоторого прямоугольного треугольника; если они к тому же суть числа целые, их называют пифагоровыми, а саму тройку (a, b, c) таких чисел – пифагоровой тройкой. Если будем последовательно умножать члены нашей «египетской» тройки (3, 4, 5) на 2, 3, 4, 5 и т. д., получим бесконечный ряд пифагоровых троек: (6, 8, 10); (9, 12, 15); (12, 16, 20); (15, 20, 25) и т. д. Но и количество «первичных» пифагоровых троек, не получающихся друг из друга умножением на число, также бесконечно; вот несколько примеров таких троек: (5, 12, 13); (8, 15, 17); (7, 24, 25); (20, 21, 29); (12, 35, 37); (9, 40, 41). Известен способ, позволяющий получить все пифагоровы тройки.Возникает естественный вопрос: а что будет, если в соотношении, определяющем пифагоровы числа, заменить возведение в квадрат на возведение в куб, в четвёртую, пятую и более высокие степени? Можно ли привести пример таких целых положительных чисел a, b, c
, чтобы выполнялось равенство a³ + b³ = c³, или равенство a4 + b4 = c4, или a5 + b5 = c5 и т. п.? Любую тройку целых положительных чисел, для которых выполняется одно из указанных равенств, условимся называть тройкой Ферма. Более точно, условимся называть тройкой Ферма для показателя n любую тройку целых положительных чисел a, b, c, для которой выполняется равенство an + bn = cn. Таким образом, пифагоровы тройки суть не что иное, как тройки Ферма для показателя 2. Итак, вопрос состоит в том, существует ли тройка Ферма для какого-либо показателя, большего двух.Этим вопросом заинтересовался великий французский математик середины XVII в. Пьер Ферма (вообще-то, занятия математикой, а заодно и оптикой для него были хобби, служебные его обязанности состояли в заведовании отделом петиций тулузского парламента). Поиски требуемых примеров ни к чему не привели, и Ферма пришёл к убеждению, что их не существует. Утверждение о несуществовании троек Ферма принято называть Великой теоремой Ферма
. Строго говоря, его следовало бы называть Великой гипотезой Ферма, поскольку автор утверждения не оставил нам его доказательства. Ферма оставил потомкам лишь две латинские фразы, написанные им около 1637 г. на полях изданной в 1621 г. в Париже на двух языках, греческом и латинском, «Арифметики» древнегреческого математика Диофанта. (Поля в книге были широкими, и Ферма делал на них заметки по ходу чтения.) И вот какие две фразы он, в частности, написал (приводим их в переводе): «Невозможно для куба быть записанным в виде суммы двух кубов, или для четвёртой степени быть записанной в виде суммы двух четвёртых степеней, или вообще для любого числа, которое есть степень больше двух, быть записанным в виде суммы двух таких же степеней. Я нашёл поистине удивительное доказательство этого предложения, но оно не уместится на полях [hanc marginis exiguitas non caperet (букв. скудость поля его не вмещает)]». В бумагах Ферма после его смерти было найдено лишь доказательство Великой теоремы для показателя 4, т. е. невозможности равенства a4 + b4 = c4 ни при каких целых положительных a, b, c (а в нашей терминологии – отсутствия троек Ферма для показателя 4).Своих математических открытий Ферма никогда не публиковал, часть их, да и то, как правило (если не всегда), без доказательств, сообщалась им в личной переписке, а часть стала известной только после его смерти в 1665 г. К числу последних принадлежит и Великая теорема: в 1670 г. старший сын Пьера переиздал в Тулузе Диофантову «Арифметику», включив в издание и 48 примечаний, сделанных его отцом на полях. Так Великая теорема стала известна человечеству. Могла ли она не привлечь внимания ореолом романтической тайны, окружавшим её появление? Неочевидность наблюдения гения, соединённая с простотой и наглядностью, короткая запись на полях книги Диофанта, утверждение о наличии «поистине удивительного» доказательства, тщетность попыток обнаружить это доказательство… Всё это чем-то напоминало записку из бутылки, выловленной в океане, с точными, но частично размытыми водой указаниями о месте, где зарыт клад.