В начале данной главы мы упоминали, что рискуем навлечь на себя упрек в непоследовательности, поскольку, обещав говорить о неутилитарном аспекте математики, сразу же перешли к её практическому применению. Однако эта непоследовательность кажущаяся, потому что описанное практическое приложение обратной теоремы Пифагора принадлежит далёкому прошлому. Едва ли кто-либо строит прямые углы указанным способом сегодня. Он переместился из мира практики в мир идей, подобно тому как многое из материальной культуры прошлого вошло в духовную культуру настоящего.
Тему египетского треугольника можно подразделить на три подтемы: прямой угол, треугольник и равенство 3² + 4² = 5². В каждой из этих подтем усматриваются элементы, относящиеся к тому, что автор этих строк понимает под общечеловеческой культурой. Подкрепим сказанное примерами.
Сперва о понятии «прямой угол». Оно может быть использовано для интеллектуального обогащения. Поставим такую задачу: объяснить, какой угол называется прямым, но не на визуальных примерах, а вербально, например по телефону. Вот решение. Попросите собеседника мысленно взять две жерди, соединить их крест-накрест и заметить, что в точке соединения сходятся четыре угла; если эти углы равны друг другу, каждый из них и называют прямым. «При чем тут духовная культура, если речь идёт о жердях?!» – возмутится критически настроенный читатель. Но суть здесь, конечно же, не в жердях, а в опыте вербального определения одних понятий через другие. Такой опыт поучителен и полезен, а возможно, что и необходим. Математика вообще удобный полигон для оттачивания искусства объяснения. Адресата объяснений следует при этом представлять себе тем внимающим афинскому софисту любопытным скифом, о котором писал Пушкин в послании «К вельможе». Объяснение признаётся успешным, если есть надежда, что любопытный скиф его поймёт. Кстати, если скиф окажется не только любопытным, но и глубокомысленным, он заявит, что ему непонятно, какие углы называются равными, а непонятно потому, что каждая сущность может быть равной только сама себе. И в этом мы согласны со скифом. Ведь когда говорят, скажем, о равенстве людей, то всегда прибавляют (хотя бы мысленно), в чем они равны. Вспомним, например, первую фразу 1-й статьи Всеобщей декларации прав человека: «Все люди рождаются свободными и равными
Теперь – пример, относящийся к треугольникам. Речь пойдёт о триангуляции.
Потребность в измерении больших, в сотни километров, расстояний – как на суше, так и на море – появилась ещё в древние времена. Капитаны судов, как известно из детских книг, меряют расстояния числом выкуренных трубок. Близок к этому метод, применявшийся во II в. до н. э. знаменитым древнегреческим философом, математиком и астрономом Посидонием, учителем Цицерона: морские расстояния Посидоний измерял длительностью плавания (с учётом, разумеется, скорости судна). Но ещё раньше, в III в. до н. э., другой знаменитый древний грек, заведовавший Александрийской библиотекой математик и астроном Эратосфен, измерял сухопутные расстояния по скорости и времени движения торговых караванов. Можно предполагать, что именно так Эратосфен измерил расстояние между Александрией и Сиеной, которая сейчас называется Асуаном (если смотреть по современной карте, получается примерно 850 км). Это расстояние было для него чрезвычайно важным. Эратосфен хотел измерить длину меридиана и считал, что эти два египетских города лежат на одном и том же меридиане; хотя это в действительности не совсем так, но близко к истине. Найденное расстояние он принял за длину дуги меридиана. Соединив эту длину с наблюдением полуденных высот солнца над горизонтом в Александрии и Сиене, он далее путём изящных геометрических рассуждений вычислил длину всего меридиана и, как следствие, радиус земного шара.