Ещё в XVI в. расстояние (примерно 100 км) между Парижем и Амьеном определялось при помощи счёта оборотов колеса экипажа. Приблизительность результатов подобных измерений очевидна. Но уже в следующем столетии голландский математик, оптик и астроном Снеллиус изобрёл излагаемый ниже метод триангуляции и с его помощью в 1615–1617 гг. измерил дугу меридиана, имеющую угловой размер 1°11′30''.
Посмотрим, как триангуляция позволяет определять расстояния. Сперва выбирают какой-нибудь участок земной поверхности, включающий в себя оба пункта, расстояние между которыми хотят найти, и доступный для проведения измерительных работ на местности. Этот участок
В частности, именно так в XIX в. была найдена длина дуги меридиана от широты Северного Ледовитого океана (в районе Хáммерфеста на норвежском острове Квáлё) до широты Чёрного моря (в районе дельты Дуная). Она была составлена из длин 12 отдельных дуг. Процедура облегчалась тем, что для измерения длины дуги меридиана вовсе не требуется, чтобы составляющие дуги примыкали друг к другу концами; достаточно, чтобы концы соседних дуг находились на одной и той же широте. (Например, если нужно узнать расстояние между 70-й и 40-й параллелями, то можно на одном меридиане измерить расстояние между 70-й и 50-й параллелями, на другом меридиане – расстояние между 50-й и 40-й параллелями, а затем сложить полученные расстояния.) Общее число треугольников триангуляции равнялось 258, длина дуги оказалась равной 2800 км. Чтобы исключить неточности при измерениях неизбежные, а при вычислениях возможные, десять баз были подвергнуты непосредственному измерению на местности. Измерения проводились с 1816 по 1855 г., а результаты были изложены в двухтомнике «Дуга меридиана в 25°20′ между Дунаем и Ледовитым морем» (СПб., 1856–1861), принадлежащем перу замечательного российского астронома и геодезиста Василия Яковлевича Струве (1793–1864), осуществившего российскую часть измерений.
Формулы тригонометрии, упомянутые выше, входят в школьную программу. Подавляющему большинству после школы они никогда не понадобятся, их можно спокойно забыть. Знать – и не только знать, но и осознавать, понимать – надо следующее (и именно это должно входить в обязательный, на наш взгляд, интеллектуальный багаж): треугольник однозначно определяется заданием любой его стороны и прилегающих к ней углов, и этот очевидный факт может быть использован и реально использовался для измерения расстояний методом триангуляции. Если всё же кому-нибудь когда-нибудь и понадобятся формулы тригонометрии, их легко найти в справочниках. Учат ли в наших школах пользоваться справочниками? А ведь это умение несравненно полезнее, чем затверженные наизусть формулы.