Всякая ограниченная часть пространства называется геометрическим телом. Геометрическое тело можно подразделить на части; каждая часть геометрического тела есть также геометрическое тело. Граница геометрического тела, т. е. то, чем оно отделяется от остального пространства, называется поверхностью. Поверхность можно подразделять на части; всякая часть поверхности есть также поверхность. Граница поверхности или части поверхности называется линией. Линию можно также подразделять на части; каждая часть линии есть также линия. Граница линии или части линии называется точкой. Геометрическое тело, поверхность, линия и точка не существуют раздельно. Однако при помощи отвлечения мы можем рассматривать поверхность независимо от геометрического тела, линию – независимо от поверхности и точку – независимо от линии. При этом поверхность мы должны представлять себе не имеющею толщины, линию – не имеющею ни толщины, ни ширины и точку – не имеющею ни длины, ни толщины.
Всякая линия содержит в себе бесчисленное множество точек. Принято говорить, что эти точки лежат на линии или что эта линия проходит через эти точки. Их можно рассматривать как последовательные положения одной и той же точки, движущейся вдоль этой линии. Поэтому можно сказать, что линия есть след движения точки. Если, например, мы остриё карандаша двигаем по бумаге, то след этого движения на бумаге есть приблизительно линия; приблизительно потому, что остриё карандаша не представляет собою геометрической точки, вследствие чего проведённая на бумаге линия имеет некоторую ширину (и даже толщину). Чем острее очинён карандаш, тем более остриё его приближается к геометрической точке и тем более линия, проведённая этим остриём, приближается к геометрической линии. Подобно этому поверхность можно рассматривать как след движения линии, движущейся в пространстве некоторым образом.
Совокупность каких бы то ни было точек, линий, поверхностей или тел, расположенных известным образом в пространстве, называется вообще геометрической фигурой.
Образуют ли геометрическую фигуру два не имеющих общих точек шара? Если исходить из точного смысла последней фразы приведённой цитаты, ответ должен быть утвердительным. Но нам хотелось бы получить право говорить, что это не фигура, а две фигуры. Поэтому мы включим в понятие фигуры дополнительное требование