Читаем Аппараты с перемешивающими устройствами полностью

Геометрия колес насосов отличается в зависимости от коэффициента быстроходности, определяемого по формуле [29,с.328]:

Для колес насосов с изменением направления подачи жидкости с радиального на осевое и изменением коэффициента быстроходности видно изменение геометрических размеров колес.

Прандтль отмечает [33], что в осевых насосах рабочие колеса схожи с гребными винтами, а, следовательно, и с пропеллерными и лопастными мешалками. Центробежные колеса имеют существенные отличия по геометрии.

__

<p>Перемешивание без закручивания потока соосными мешалками</p>

В работах [14], [15] Ефановым К.В. показано перемешивающее устройство, использующее эффект от противоположного вращения пропеллерных мешалок, ранее применяемый только в гребных винтах судов и на воздушных авиационных винтах.

В случае гребного винта энергия, теряемая на закручивание снижает КПД винта. Для мешалки эта энергия не теряется, а должна быть эффективно распределена в перемешиваемом объеме так как вращательное движение необходимо для перемешивания, но должно быть ограничено во избежание образования воронки. Представим ниже вариант мешалки, позволяющий реализовать перемешивание без закручивания потока.

В существующих подходах к устранению закручивания используются отражательные перегородки, направляющие цилиндры и другие аналогичные решения. Отражательными перегородками можно изменить структуру потока увеличением осевой скорости. Соосный тандем работает в режиме осевого насоса и тем самым при отсутствии других компонент в скорости, осевой поток наиболее мощный. Для процессов перемешивания мешалками закручивание потока является следствием конструкции самой мешалки, ее лопастей, а именно распределением компонент скоростей, сообщаемых потоку лопастью. Следовательно, устранением причины закручивания в конструкции самого перемешивающего устройства, можно устранить закручивание потока как следствие. Результатом устранения закручивания является возможность проведения процесса

перемешивания в более интенсивном режиме, улучшение стабильности работы перемешивающего устройства за счет устранения гироскопического и реактивного моментов, повышение КПД механической части устройства.

Новый физический принцип и параметры процесса перемешивания.

Покажем влияние и возможность использования эмерджентного и синергетического эффектов на энергетические параметры процесса и характеристики устройства перемешивания.

Интенсивность процесса перемешивания мешалкой можно оценить временем пребывания и потребляемой мощностью. Параметр потребляемой мощности, затрачиваемой на перемешивание, непосредственно связан с параметром КПД устройства. КПД непосредственно для перемешивающего устройства характеризует его эффективность по передаче механической энергии потоку. По данным [1] КПД пропеллерной мешалки приблизительно составляет 0,61.

Производительность мешалки можно характеризовать насосным эффектом (радиальным и осевым) а также кратностью перемешивания (отношением насосного эффекта к объему аппарата).

Для лопастного устройства по теории идеального винта потеря КПД происходит при закручивании потока и трении на лопастях. Очевидно, что при устранении закручивания потока вырастет и КПД устройства. И также очевидно, что закручивание потока не является неизбежным при перемешивании в случае применения соосного тандема мешалок противоположного вращения. Для воздушных винтов отсутствие закручивания на выходе показано в работе. Для гребных винтов в работе показан более высокий КПД соосного тандема по сравнению с суммарным КПД двух

составляющих винтов по-отдельности. Осевой эффект (тяга) для перемешивающего устройства особенно важен в процессах перемешивания, в начале которых необходим подъем со дна аппарата твердых частиц. Осевая тяга соосного тандема авиационных винтов выше суммарной тяги двух составляющих винтов по-отдельности (синергетический эффект), что может быть применено для процессов перемешивания.

__

Двухрядные перемешивающие устройства можно условно разделить по критерию организации вращения взаимного вращения мешалок на два типа: мешалки с совпадающим направлением и с противоположным направлением вращения вокруг оси вала. Мешалки первого типа устанавливаются на одном валу, как правило сплошного сечения, вращаемым одним мотор-редуктором. Мешалки второго типа устанавливаются на коаксиальных валах (внутренний сплошного сечения, наружный полый). Привод коаксиальных валов может быть, как через планетарный редуктор от одного мотор-редуктора, так и от двух мотор-редукторов.

Конструкция с двумя мотор-редукторами позволяет организовать вращение мешалок в одинаковом или противоположном направлении, а также изменять скорость вращения одной

из мешалок тандема, не меняя скорость вращения другой.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки