Читаем Аппараты с перемешивающими устройствами полностью

Матричное уравнение запишется в виде т.к.:

Уравнение имеет решение при равном нулю детерминанте системы:

Матрица массы конечного элемента записывается формулой:

Для плоского линейного элемента перемещения описываются полиномами Гермита [20,с.491], матрица жесткости запишется:

После преобразований [20]:

Для конечного элемента, показанного на рисунке выше, с нагрузкой вдоль оси и с узлами на концах, с применением линейных интерполяционных функций, матрица масс записывается в виде [20,с.492]:

Запишем формулу для матрицы жесткости.

На рисунке показан стержневой элемент под действием изгиба [20,с.69]:

Вектор параметров перемещений в узлах элемента имеет два перемещения и два вращения:

Перемещение выражается в виде полинома с четырьмя суммированными координатами. Можно записать:

Угол

Перемещения и вращения на концах стержня:

Матрица С [20,с.70]:

Матрица интерполяционных функций, посредством которой вводится связь между перемещениями на краях и для любой точки по оси стержневого элемента:

Делитация связана с перемещением:

Для вектора деформации:

(составляющие деформации в зависимости от составляющих перемещений находятся применением матрицы оператора над матрицей интерполяционных функций).

L – матрица-оператор, для плоских задач

Ar – матрица интерполяции

Для матрицы интерполяции могут быть приняты функции вида:

По уравнению :

Пропуская математические выкладки, получается:

Для конечного элемента так как перемещения на концах равны нулю, матрица жесткости записывается в виде [20,с.505]:

Теперь, подставив в уравнение матрицы получится:

Вводится обозначение:

Характеристическое уравнение:

В виде многочлена (см. о решении уравнений в программе MathCAD):

Для случая б), т.е. для второй части на рисунке выше, перемещение в узле 1 и вращение в узле 2 равны 0. С учетом этого матрицы k и m уменьшаются:

Характеристическое уравнение:

В виде многочлена:

Эпюра собственных колебаний вала:

__

Итак, в разделе показаны теоретические основы расчета методом конечных элементов валов на свободные колебания.

Теорию можно сравнить с теорией ручного расчета по теории колебаний. Можно сделать вывод о том, что по теории колебаний применяется принцип Даламбера, для приближенного исследования колебаний используется метод Релея, а в расчетах по МКЭ используется вариационная формулировка по принцип Гамильтона с составлением и решением матриц.

Расчет по методу МКЭ является более обоснованным теоретически и позволяет выполнять расчет валов с мешалками и опорными узлами любой конфигурации.

Можно сделать вывод о том, что квалификации расчетчиков для расчетов ручным методом по теории колебаний и расчетов МКЭ являются приблизительно одинаковыми на основании сравнения сложности расчетных методик.

Нормативная методика по РТМ не выглядит обоснованной по сравнению с расчетами МКЭ и ручными расчетами по теории колебаний.

<p>Мешалки</p>

В настоящее время эффективность перемешивания определяется помещением индикатора в перемешиваемый объем аппарата (или лабораторной установки) и фиксацией времени и наличия установления равномерного распределения (окрашивания) индикатора по объему.

Такой подход нельзя считать полностью корректным. Определяются неоднородность перемешивания, распределение твердой фазы в жидком объеме др. параметры, определяющие качество перемешивания.

В вытяжной трубе при аэродинамических испытаниях автомобилей или авиационной техники, конструкцию обдувают окрашенной струей и фиксируют реакцию струи в части обтекания в зависимости от геометрической формы (конфигурации) конструкции.

Для мешалок необходимо объединить два указанных подхода.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки