Читаем Аппараты с перемешивающими устройствами полностью

То есть наметить структуру потоков в аппарате в зависимости от его геометрических параметров, затем выбрать мешалку, которая отбрасыванием потока жидкости от лопастей создает намеченную структуру потока. И по введению индикатора можно установить степень полноты распределения индикатора, как эффективность перемешивания.

__

Приведем структуры потоков для распространенных типов мешалок по данным Ф. Стренка [27,с.46]:

Также Ф. Стренк приводит направление тока для различных положений пропелерной мешалки [27,с.60]:

Стренк приводит изменение линий тока в зависимости от высоты установки мешалки в аппарате [27,с.104]:

Для шнековой мешалки Ф. Стренк также приводит линии тока [27,с.65]:

Используя данные и направлении токов для различных мешалок в зависимости от геометрических параметров применяемого аппарата должен выполняться подбор мешалки.

Перечень конструкций корпусов аппаратов, в которых устанавливаются мешалки, приводит Стренк [27,с.68]:

Траектория после пропеллерного устройства по данным работы Прандтля [33,с.304]:

Лопасти мешалки вступают в контакт с жидкостью поочередно. На границе лопасти происходит образование поверхности раздела. Вода между лопастями имеет скорость равную скорости лопаток, затем после выхода перемешиваясь в объеме аппарата, скорость снижается. В практике изучение перемешивающих устройств анализировалось распределение и перемешивание потоков, но не выход с лопаток мешалки. Анализ направления выхода потоков струй с лопасти позволит создавать траектории потока с заданной геометрией, а не фиксировать завихрения после той или иной мешалки.

Теория гребного винта отличается от теории крыла тем, что лопасти винта описывают винтовые линии при движении вперед, а крыло движется только вперед.

В случае гребного винта вращение снижает КПД, но в случае мешалки, вращение необходимо для перемешивания. И возникает проблема эффективного рассеяния энергии в объеме аппарата. Та энергия, которая теряется для винта, для мешалки не теряется и должна использоваться для интенсификации процесса. Однако, решение о возможности перемешивания соосными мешалками противоположного вращения без закручивания будет представлено ниже.

Васильцов [1,с.82] приводит эпюру поля скоростей для лопастной мешалки и аппарата без отражательных перегородок:

Также Васильцов приводит [1,с.100] эпюру поля скоростей для турбинной мешалки и аппарата с отражательными перегородками:

Для оценки гидродинамического режима перемешивания анализируется профиль скорости.

В работе [28,с.22] рекомендуется подбирать мешалки в зависимости от режима движения жидкости при перемешивании. В этой же работе [28,с.23] отмечается, что различие в условиях перемешивания между мешалками может быть скомпенсировано частотой вращения и диаметром мешалки. Авторы приводят пример, по которому для трёхлопастной и турбинной мешалки равного диаметра для одинакового режима движения взвешенных частиц, скорость вращения турбинной мешалки должна быть ниже. Результат авторов можно объяснить траекторией линий воздействия лопастей мешалок на жидкость.

__

Мешалки выбираются по АТК 24.201.17-90 или изготавливаются с нестандартными размерами.

Мешалки конструктивно состоят из втулки и установленных на ней лопастей. Поэтому объект мешалки можно рассматривать как базовое устройство с рядом исполнений, получаемых внесением изменений в базовую конструкцию. Например, из лопастной мешалки скручиванием лопастей получается пропеллерная мешалка, открытое пропеллерное насосное колесо, введением дисков и разнесением лопастей получаются турбинные мешалки.

Такая попытка объединить конструкции мешалок позволяет лучше подбирать геометрию мешалки под намеченную структуру потока в аппарате, определяемую направлением отбрасывания жидкости от лопастей мешалки.

– лопастная мешалка с параллельными лопастями оси [20,с.254]:

– трехлопастная (или шести) мешалка с лопастями под углом 30° (получается изменением угла установки лопасти):

– пропеллерная мешалка с лопастью постоянного шага [20,с.256] (получается изменением шага лопасти):

изменение геометрии пропеллеров по Прандлю [33] (воздушный винт, тихоходный гребной винт, быстроходный гребной винт):

Как можно видеть, пропеллерная мешалка из винтов, представленных Прандтлем, занимает промежуточную конфигурацию между тихоходным и быстроходным гребными винтами.

– якорная, рамная и листовая мешалки с увеличенными лопастями (получается увеличением размеров лопасти):

– турбинная мешалка [20,с.257] (получается разнесением лопастей от втулки и введением диска):

– зубчатая мешалка (получается введением вместо лопастей диска с загнутыми зубьями, выполняющими роль лопастей):

Рабочие колеса насосов [29,с.19]:

Колеса насосов по данным [29,с.328]:

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки