Читаем Аппараты с перемешивающими устройствами полностью

Рассмотрим шарнирно опертый стержень [32,с.200]. Система уравнений распадется на две независимые системы. Уравнение, описывающее только изгибные колебания в плоскости симметрии:

Уравнения, описывающие изгибно-крутильные колебания:

Граничные условия при x = 0 и x = l:

Граничные условия удовлетворяются при:

Собственные частоты определяются из формулы:

Частоты изгибных и крутильных колебаний :

Собственные частоты колебаний:

При a3 = 0 центр тяжести и центр изгиба совпадают,

__

Как видно, формулы Тимошенко и по справочнику [32] для определения поперечных и изгибных колебаний почти полностью совпадают.

Однако, Тимошенко указывает о независимости от и необходимости применения метода Релея-Ритца.

__

Таким образом, для вала с мешалками как для балки по приведенной выше теории должны быть рассчитаны поперечные колебания, например, для неразрезной балки на трех опорах.

Затем должны быть рассчитаны крутильные колебания. Но в процессе перемешивания крутильных колебаний может и не возникать, в этом случае критические частоты будут строго соответсвовать поперечным частотам собственных колебаний. В случае наличия крутильных колебаний, их необходимо определить и проверку прочности выполнить для поперечных и крутильных колебаний.

Метод определения критической скорости по работе Тимошенко [31], где колебания связываются с эксцентриситетом необходимо считать некорректным. Колебания возникнут и при отсутсвиии эксцентриситета, однако, условия для статической балки и вращающегося вала с учетом эксцентриситета будут отличаться.

__

Тимошенко указывает о необходимости численного выполнения расчетов колебаний в работе [30]. То есть в том числе маститый специалист признает превосходство численных методов над ручными расчетами.

__

Итак, можно сделать следующий вывод: теорию колебаний можно применять для ручного расчета на практике, но она больше необходима для глубокого понимания физики процесса колебаний, а расчеты должны выполняться методом конечных элементов в специальном программном пакете, например, ANSYS.

<p>Расчет валов методом конечных элементов</p>

В динамической задаче воздействие внешних сил является функцией времени. Напряженно-деформированное состояние зависит от времени. Время является дополнительным параметром, усложняющим расчет по сравнению со статическими расчетами.

Уравнения движения динамической системы выводятся с применением принципа Даламбера, на основе принципа возможных перемещений, на основе вариационного принципа Гамильтона.

Метода Даламбера удобно применять для систем с небольшим числом степеней свободы [20,с.486], к которым относятся валы с мешалками. Но вариационный подход Гамильтона является обобщением методов. Поэтому расчет вала с мешалками методом конечных элементов приведем на основе вариационного подхода Гамильтона.

Принцип Гамильтона записывается в форме [20]:

(Т и П – кинетическая и потенциальная энергии, Wne – силы демпфирования).

Функционал Лагранжа [20]:

Функционал Лагранжа по принципу Гамильтона при возможных перемещениях удовлетворяет условиям совместности и граничным условиям на контуре в течении времени от t1 до t2 и имеет стационарное значение.

Начальное положение для вариационной формулировки МКЭ следует при Т = 0 и Wne = 0:

Введем зависимости для Т, П и Wne от обобщенных перемещений, скоростей и сил [20]:

После подстановки в интеграл и преобразований получим уравнение движения Лагранжа:

Для конечного элемента объема V [20]

– кинетическая энергия в матричной форме:

– потенциальная энергия (складывающаяся из внутренней энергии деформации, потенциальной энергии внешних объемных и внешних поверхностных сил):

В конечном элементе поле перемещений и деформаций записываются интерполяционными функциями:

Скорость связана с обобщенной скоростью:

Силы демпфирования пропорциональны скоростям (являются неконсервативными):

Обобщенные силы в узлах конечного элемента при допущении о равномерном распределении сил демпфирования в единице объема, записываются формулой:

Формулы для кинетической и потенциальной энергии можно записать после преобразований в виде:

После подстановки записанных формул в первую формулу вариационной формулировки, получается матричная формулировка конечного элемента [20]:

m – матрица масс, c – матрица демпфирования элемента, k – матрица жесткости, Qe – вектор обобщенных сил в узлах конечного элемента.

В результате составляется уравнение движения системы конечных элементов на основе уравнений движения одного (каждого) конечного элемента [20]:

М – матрица масс, С – матрица демпфирования, K – матрица жесткости, Q – вектор обобщённых сил.

__

Собственные колебания вала находят решением последней записанной системы дифференциальных уравнений. Для колебаний без затухания, система запишется в виде [20,с.500]:

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки