Ограничения метода Релея приводят систему к системе с 1 степенью свободы. При точном рассмотрении системы, она имеет множество степеней свободы.
Перемещение каждого груза:
Наибольшие перемещения грузов являются амплитудой для
Скорости грузов:
Максимальная скорость при
Максимальная скорость соответсвует переходу точки через статическое равновесие, т.к. фаза
Скорость колебаний переменная, так как колебание происходит по закону синусоиды, например,
Сумма энергий постоянна и является полной энергией системы при рассмотрении идеального случая без потерь:
Для какого-либо конкретного положения системы:
При нахождении точки на оси абсцисс (оси вала), потенциальная энергия равна нулю, кинетическая максимальная:
Т.е. вся полная энергия системы является максимальной кинетической энергией.
Для фазы
Т.е. вся полная энергия системы является потенциальной энергией.
Можно записать:
Для случая рассматриваемого груза:
Из этой формулы находится круговая частота:
Период колебаний:
___
Для трех грузов на валу, круговая частота запишется по формуле:
__
Для n грузов круговая частота запишется по формуле:
Как можно видеть, определение круговой частоты сводится к нахождению статических прогибов. Прогибы могут быть также найдены графоаналитически.
Для одного груза круговая частота запишется по формуле:
__
Рассмотрим по методу Релея колебания двухопорного однопролетного вала, нагруженной распределенной нагрузкой [2,с.81].
Балка с распределенной нагрузкой условно разбивается на ряд участков с заменой распределенной нагрузки, приходящейся на каждый участок, сосредоточенной силой, приложенной по центру тяжести участка.
Колебания системы с распределенной нагрузкой находятся по приведенной выше формуле:
Точность решения зависит от числа n участков.
Прогибы находят по уравнению упругой линии с равномерно распределенной нагрузкой:
Для 8 участков (8 прогибов):
С учетом этого, уравнение упругой линии:
С учетом того, что
__
Рассмотрим по методу Релея колебания балки на нескольких опорах [2,с.87].
В целом многопорный вал больше соответствует конструкциям полупогружных насосов, погружных электродвигателей, но пример трехопорного вала нужно использовать в проектировании химических и нефтяных аппаратов с перемешивающими устройствами.
Форма прогиба такая же как у статического прогиба под действием сил, применяя принцип Даламбера (приводя динамическое нагружение к статическому приложению сил).
Силы инерции вызывают дополнительный прогиб
Сила инерции в сечении I:
Сила инерции в сечении II:
Сила равная 1 приложенная в сечении I вызывает прогиб
Прогиб в этом же сечении от силы инерции, приложенной в сечении II:
Полный прогиб в сечении I:
Полный прогиб в сечении II:
Полученные уравнения для
Коэффициенты в уравнениях находятся по принципу сложения сил, по которому прогиб в любой точке вала под действием сосредоточенных сил получается в виде суммы прогибов от каждой из силы по отдельности (для прогиба в сечении I находятся и суммируются прогибы от сил
Уравнение упругой линии для левой части вала (с – расстояние между правой опорой и точкой приложением силы):
Прогиб в месте приложения груза:
Находится неизвестная реакция опоры
Прогиб от силы
Прогиб от силы
Прогиб от силы