Я вернулся в Политехнический институт Ренсселера, где защитил диссертацию по немонотонной логике и спроектировал медицинскую систему CARE (cardiac and respiratory expert – эксперт по болезням сердца и дыхательных путей). Чтобы оплачивать обучение, я работал над объектно-ориентированной системой проектирования схем по государственному контракту. После получения научной степени я стал искать работу, и в это время сильно заболел мой отец. Он жил в Уэстчестере, где базировалась фирма IBM, поэтому я вернулся в IBM Research.
На тот момент ИИ там совсем не занимались, но 15 лет спустя, благодаря суперкомпьютеру Watson и другим проектам, исследования в этом направлении возобновились. Я никогда не отказывался от своего желания работать над ИИ, постепенно создавая квалифицированную команду. Когда возник интерес к телевикторине «Своя игра», я был единственным в фирме, кто верил в наши силы.
М. Ф.
: История этого суперкомпьютера уже очень хорошо документирована, и я бы не хотел на ней останавливаться, поэтому лучше расскажите, что вы думали об ИИ после ухода из IBM.Д. Ф.
: С моей точки зрения, основу для коммуникации, а также развития теорий и идей составляют такие вещи, как восприятие и распознавание объектов, контролирование и выполнение различных задач, а также знание, построение, развитие и понимание концептуальных моделей.В процессе работы над проектом Watson я узнал, что чисто статистические подходы ограничены в возможности давать ответы на произвольные вопросы. Статистические подходы эффективны для задач восприятия, таких как распознавание образов и голоса, а также для задач управления, например, беспилотными автомобилями и роботами, но в понимании пространства знания ИИ буксуют.
М. Ф.
: В 2015 г. вы основали собственную компанию Elemental Cognition. Расскажите о ней.Д. Ф.
: Это исследовательская компания, занимающаяся ИИ, которая пытается добиться реального понимания языка. Это область ИИ, в которой пока ничего особого не сделано. Мы хотим выйти за пределы поверхностной структуры языка и шаблонов, которые встречаются в частоте повтора слов, и понять скрытый смысл. Это позволит строить внутренние логические модели, которыми люди пользуются для рассуждений и общения. Мы хотим создать систему, автономно изучающую окружающий мир, в том числе через диалог с человеком.Попытки определить, что же такое знание и понимание, – интересная часть нашей работы, ведь люди могут давать разные интерпретации одного и того же текста.
М. Ф.
: Да, распознав на изображении кошку, существующие системы не воспринимают ее так же, как люди.Д. Ф.
: Вопрос «что такое кошка?» так же труден, как «что такое понимание?». Вспомните, сколько энергии уходит на то, чтобы достичь взаимопонимания между людьми. Поэтому в науках разработаны формальные языки, которые недвусмысленно передают информацию. Для обычного общения мы используем естественный язык, в котором важны контексты и намерения. Чтобы достичь уверенного понимания, люди задают друг другу вопросы, возвращаются к ранее сказанному, согласовывают свои представления, пока у обеих сторон не появятся похожие модели предмета разговора. И все потому, что сам язык не несет информации, а является только средством синхронизации самостоятельных моделей.Например, когда моей дочери было семь лет, она прочитала в книге, что электричество – это энергия, которая создается разными способами, в частности с помощью воды, вращающей турбины. После текста задавался простой вопрос: «Как производится электричество?». Дочь еще раз заглянула в текст, сопоставила его с вопросом и сказала, что слово «создано» – синоним слова «произведено», а значит, ответом будет фраза: «Вода вращает турбины». Примерно так работает большинство современных языковых ИИ-приложений. Разница в том, что моя дочь осознавала, что сути она не понимает, а только копирует информацию. Ей было интересно, как все выглядит на самом деле, потому что от своего логического представления она ожидала гораздо большего. Я воспринял это как признак интеллекта.
М. Ф.
: Вы говорите сейчас об ИИ человеческого уровня?Д. Ф.
: Когда мы научимся создавать системы, умеющие обучаться автономно, то есть понимать прочитанное и строить на его основе модели, а затем синхронизировать их в процессе общения, можно будет говорить, что мы приблизились к тому, что я назвал бы целостным интеллектом.Я делю полный ИИ на три части: восприятие, контроль и знание. Многие из процессов, происходящих в сфере глубокого обучения, позволили значительно продвинуться в первых двух элементах. Третьим элементом мы пытаемся заниматься в компании Elemental Cognition.
М. Ф.
: Решить проблему понимания – одна из заветных целей всех, кто занимается ИИ. После этого многое станет возможным. Например, перенос обучения – применение знаний из одной области в другой.