Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

7.7.4. Возможность резонансных возвращений в 2036 г. и в последующий период. Различные точки большой полуоси эллипса рассеяния соответствуют различным виртуальным астероидам. Если в номинальном решении варьировать значение среднего движения в пределах от +3σn до величины -3σn, а все остальные элементы оставлять неизменными, то точки пересечения виртуальных астероидов с плоскостью цели пробегают всю большую ось эллипса, начиная с ближайшего к Земле ее конца и заканчивая наиболее удаленным концом (рис. 7.5). Соответствующие виртуальные астероиды пройдут на различных расстояниях от центра Земли и поэтому их орбиты изменятся по-разному.

Особенно значительны по своей величине и возможным последствиям будут изменения большой полуоси. Так, среднее движение астероида, прошедшего через ближайший к Земле конец большой оси эллипса, изменится от 1,11385 до 0,84407 °/сут, а среднее движение астероида, прошедшего через дальний конец большой оси эллипса, изменится от 1,11385 до 0,85429 °/сут. Измененным значениям среднего движения соответствуют периоды обращения, выраженные в годах, P = 1,1677 и P = 1,1537. В силу непрерывности существуют виртуальные астероиды, которые будут иметь периоды обращения, равные любому числу в указанных пределах. В частности, верхний предел близок к отношению 7: 6 ≈ 1,1667. Виртуальные астероиды с периодами, близкими к 1,1667 года, по истечении семи лет, совершив шесть оборотов вокруг Солнца, опять окажутся вблизи Земли, и минимальное расстояние от Земли для некоторого множества из них может оказаться меньше или равным радиусу Земли, что будет означать столкновение. Более точное представление о реальной ситуации в апреле 2036 г. можно получить, если численным путем проследить движение большого числа виртуальных астероидов, чьи точки пересечения с плоскостью цели в апреле 2029 г. располагаются вдоль большой оси эллипса рассеяния. Получить начальные условия для таких виртуальных астероидов можно путем варьирования среднего движения Апофиса в начальную эпоху в пределах ±3σn (для большей гарантии вариацию можно брать в более широких пределах). Значения минимальных расстояний между Апофисом и Землей в 2036 г., полученные для вариаций среднего движения в пределах от +11 252 10-11 до +11 257 10-11 °/сут, приведены в табл. 7.3.

Таким образом, вариация номинального значения среднего движения примерно в указанных пределах ведет к столкновению Апофиса с Землей в 2036 г. Так как согласно решению ИПА σn = 2739 10-11 °/сут, то указанные вариации, хотя они и несколько превышают величину 4σn, тем не менее, имеют не исчезающе малую вероятность. Интересно выяснить, в каком месте плоскости цели соответствующие виртуальные астероиды пересекают ее. Очевидно, что точки пересечения располагаются на продолжении большой оси эллипса рассеяния, занимая некоторый его отрезок. Один конец отрезка соответствует величине вариации 4,1082σn, а второй — вариации, равной 4,1100 σn. На плоскости цели вариация, равная σn, соответствует величине aζ = 351,6 км. Из этого следует, что один конец отрезка находится на расстоянии 4,1082 351,6 = 1444,4 км от центра эллипса, а другой — на расстоянии 4,1100 351,6 = 1445,0 км, т. е. длина отрезка составляет около 600 м (рис. 7.5).


Таблица 7.3. Минимальные расстояния между Апофисом и Землей в 2036 г. при различных вариациях среднего движения астероида (решение ИПА)


Это так называемая «замочная скважина» (англ. keyhole) на плоскости цели, через которую должен пройти центр Апофиса, чтобы через шесть лет астероид столкнулся с Землей. Вариация других элементов орбиты астероида мало влияет на этот вывод. С учетом их вариации отрезок большой оси превратится в щель на плоскости цели, ограниченную с боков контуром эллипса шириной около 600 м, но результат в принципе останется прежним.

Совершенно аналогично для решения [Giorgini et al., 2008] при указанных в табл. 7.4 значениях вариации среднего движения находим соответствующие им значения Δmin (номинальное значение среднего движения равно 1,1128077236422 ± 1733 10-11 °/сут, эпоха JD 2453979,5).


Таблица 7.4. Минимальные расстояния между Апофисом и Землей в 2036 г. при различных вариациях среднего движения астероида (решение [Giorgini et al., 2008])


Итак, уже при иных значениях вариации среднего движения решение [Giorgini et al., 2008] также приводит к столкновению, хотя и в чуть более поздний момент времени. В табл. 7.5 сопоставлены расчеты вероятности столкновения Апофиса с Землей в 2036 г., выполненные на основе различных решений.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос