АТФ — стандартная единица, в виде которой запасается высвобождаемая при дыхании энергия. Для синтеза АТФ из АДФ и фосфата требуется 30,6 кДж энергии на 1 моль. Поэтому АТФ может образоваться лишь в таких реакциях, при которых выход энергии составляет более 30,6 кДж/моль. Вся энергия, высвобождающаяся сверх 30,6 кДж/моль, равно как и вся энергия от реакций, дающих менее 30,6 кДж/моль, не может быть запасена в АТФ и рассеивается в виде тепла.
Поскольку вся химическая энергия представлена в одной форме (а именно, в форме АТФ), процессы, идущие с потреблением энергии, нуждаются только в одной системе, способной принимать химическую энергию от АТФ. Этим достигается большая экономия в отношении действующих в клетке механизмов.
АТФ-постоянный источник энергии для клетки. Он мобилен и может доставлять химическую энергию в любую часть клетки. Когда клетка нуждается в энергии, единственное, что требуется для ее получения — это гидролиз АТФ. Поскольку АТФ содержится во всех живых клетках, его часто называют универсальным носителем энергии.
АДФ может быть рефосфорилирован в АТФ в результате дыхательной активности (рис. 11.3) или за счет другого высокоэнергетического соединения, например креатинфосфата, присутствующего в мышечных клетках. Если весь АДФ мышечной клетки превращается в АТФ, то фосфат от АТФ переносится на креатин с образованием креатинфосфата. При этом вновь появляется некоторое количество АДФ, который может, присоединив фосфат, образовать АТФ. При понижении уровня АТФ происходит обратный процесс: фосфат переносится от креатинфосфата на АДФ, и запасы АТФ таким образом восстанавливаются (рис. 11.4).
Рис. 11.3. А. Гидролиз АТФ. Б. Рефосфорилирование АДФ в результате дыхательной активности
Рис. 11.4. Перенос высокоэнергетической фосфатной группы между АТФ и креатином
Третий путь рефосфорилирования АДФ — это фосфорилирование, протекающее в хлорофилл-содержащих клетках зеленых растений (разд. 9.4).
АТФ играет важную метаболическую роль благодаря своему центральному положению в клеточной активности. Он действует как связующее звено между дыханием и процессами, требующими затраты энергии. При этом его высокоэнергетические фосфатные группы непрерывно отщепляются и замещаются новыми.
11.3. Биологическое окисление
В клетке происходят трех типов:
1. Прямое окисление молекулярным кислородом:
А + О2 → АО2
2. Реакции, в которых А окисляется за счет В:
АН2 + В → А + ВН2.
3. Реакции, в которых происходит перенос электронов, например окисление одной ионной формы железа (Fe2+) в другую (Fe3+):
Fe2+ → Fe3+ + e-.
Все эти три типа окисления встречаются в последовательности реакций, составляющих вместе процесс, который носит название аэробного дыхания.
11.3.1. Общая характеристика клеточного дыхания
Клеточное дыхание — это окисление субстрата, приводящее к получению химической энергии (АТФ). Субстратами для дыхания служат органические соединения — углеводы, жиры и белки.
Углеводы. Большинство клеток использует в первую очередь именно углеводы. Клетки головного мозга млекопитающих вообще не способны использовать для дыхания ничего, кроме глюкозы. Полисахариды вовлекаются в процесс дыхания лишь после того, как они будут гидролизованы до моносахаридов:
Жиры. Жиры составляют "первый резерв" и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Впрочем, в клетках скелетных мышц при наличии глюкозы и жирных кислот предпочтение отдается жирным кислотам.
Белки. Поскольку белки выполняют ряд других важных функций, они используются лишь после того, как будут израсходованы все запасы углеводов и жиров, например при длительном голодании.
Окисление глюкозы — в тех случаях, когда субстратом служит глюкоза, — подразделяется на три четко различимые фазы: гликолиз (путь Эмбдена — Мейергофа), окислительное декарбоксилирование (цикл Кребса, иначе называемый циклом лимонной кислоты или циклом трикарбоновых кислот) и окислительное фосфорилирование (дыхательная цепь, где происходит перенос водорода и электронов). Гликолиз — фаза, общая для анаэробного и аэробного дыхания, но две другие фазы можно наблюдать только в аэробных условиях. Подробно все эти процессы мы рассмотрим немного позднее, а здесь скажем о них лишь несколько слов.
11.3.2. Гликолиз и цикл Кребса
При аэробном дыхании окисление глюкозы происходит путем последовательных реакций дегидрирования. При каждом дегидрировании отщепляемый водород используется для восстановления кофермента: