Для характеристики отклонения пространственной кривой L
от плоскости вводят понятие т. н. кручения, которое иногда называют второй К. Кручение s в точке М кривой определяется как предел отношения угла b между соприкасающимися плоскостями к кривой в точках М и N к длине Ds дуги MN при стремлении точки N к М:.
При этом угол b
считается положительным, если поворот соприкасающейся плоскости в N при стремлении N к М происходит против часовой стрелки при наблюдении из точки М. К. и кручение, заданные как функции длины дуги, определяют кривую L с точностью до положения в пространстве. Исследование отклонения поверхности от плоскости может быть проведено следующим образом. Через нормаль в данной точке М
поверхности проводят всевозможные плоскости. Сечения поверхности этими плоскостями называют нормальными сечениями, а кривизны нормальных сечений в точке М — нормальными кривизнами поверхности в этой точке. Максимальная и минимальная из нормальных кривизн в данной точке М именуются главными кривизнами. Если k1 и к2 — главные кривизны, то величины K=k1xk2 и Н = 1/ 2(k1 + k2) называют соответственно полной кривизной (или гауссовой кривизной) и средней кривизной поверхности в точке М. Эти К. поверхности определяют нормальные К., поэтому могут служить характеристикой отклонения поверхности от плоскости. В частности, если К = 0 и Н = 0 во всех точках поверхности, то поверхность представляет собой плоскость. Полная К. не меняется при изгибаниях поверхности (деформациях поверхности, не меняющих длин линий на ней). Если, например, полная К. равна нулю во всех точках поверхности, то каждый достаточно малый её кусок может быть изогнут на плоскость. Полная К. на поверхности без обращения к объемлющему пространству составляет объект т. н. внутренней геометрии поверхности. Средняя К. связана с внешней формой поверхности.
Понятие К. обобщается на объекты более общей природы. Например, понятие К. возникает в т. н. римановых пространствах
, представляя собой меру отклонения этих пространств от евклидовых. Лит.:
Бляшке В., Дифференциальная геометрия и геометрические основы теории относительности Эйнштейна, пер. с нем., т.1, М.— Л., 1935; Рашевский П. К., Курс дифференциальной геометрии, 4 изд., М., 1956; Погорелов А. В., Дифференциальная геометрия, 5 изд., М., 1969. Э. Г. Позняк.
Рис. к ст. Кривизна.
Кривизна поля
Кривизна' по'ля
изображения, одна из аберраций оптических систем; заключается в том, что изображение плоского предмета получается резким не в плоскости, как это должно быть в идеальной системе, а на искривленной поверхности. Если линзы, входящие в состав центрированной системы, имеют сферические преломляющие поверхности радиусов rk(k — номер поверхности по ходу светового луча) и, кроме того, в системе исправлен астигматизм, то изображение плоскости, перпендикулярной оси системы, представляет собой сферу. Её радиус R определяется соотношением,
где nk
, nk+1 — показатели преломления сред, расположенных перед и за k-той преломляющей поверхностью. В случае, когда линзы в системе можно считать тонкими (см. Линза), (*) сводится к более простой формуле: , где f’i - фокусное расстояние i-той линзы, ni — показатель преломления её материала. В сложных оптических системах (например, в фотографических объективах) К. п. исправляют, сочетая линзы с поверхностями разной кривизны так, чтобы правая часть формулы (*) стала равна нулю (т. н. условие Пецваля). Лит.:
Тудоровский Д. И., Теория оптических приборов, 2 изд., М.— Л., 1948; Слюсарев Г. Г., Методы расчёта оптических систем, 2 изд., Л., 1969, Кривизна пространства-времени
Кривизна' простра'нства-време'ни,
в общей теории относительности (теории тяготения) величина, характеризующая меру отклонения свойств пространства-времени от свойств так называемого плоского пространства-времени специальной теории относительности. Понятие К. н.-в. возникло по аналогии с понятием полной кривизны в геометрии поверхностей. К. п.-в. описывается тензором кривизны (см. Римановы геометрии). От вида тензора К. п.-в. существенно зависит тип космологических моделей (см. Космология). Кривичи (вост.-слав. племенное объединение)