Чрезвычайное развитие, превосходящее предшествующие периоды не только по количеству работ, но также по совершенству и силе методов и окончательности результатов, получают в конце 19 века и в начале 20 века все разделы М., начиная с самого старого из них — теории чисел. Э. Куммер
, Л. Кронекер
, Р. Дедекинд, Е. И. Золотарев
и Д. Гильберт закладывают основы современной алгебраической теории чисел. Ш. Эрмит
в 1873 доказывает трансцендентность числа e
, немецкий математик Ф. Линдеман в 1882 — числа p, Ж. Адамар
(1896) и Ш. Ла Валле Пуссен
(1896) завершают исследования П. Л. Чебышева о законе убывания плотности расположения простых чисел в натуральном ряду. Г. Минковский
вводит в теоретико-числовые исследования геометрические методы. В России работы по теории чисел после П. Л. Чебышева блестяще развивают, кроме уже упомянутого Е. И. Золотарёва, А. Н. Коркин
, Г. Ф. Вороной
и А. А. Марков
. Центр тяжести алгебраических исследований переносится в её новые области: теорию групп, полей, колец и т. д. Многие из этих отделов алгебры получают глубокие применения в естествознании: в частности, теория групп — в кристаллографии, а позднее — в вопросах квантовой физики.
На границе между алгеброй и геометрией С. Ли создаёт (начиная с 1873) теорию непрерывных групп, методы которой позднее проникают во все новые области М. и естествознания.
Элементарная и проективная геометрия привлекают внимание математиков главным образом под углом зрения изучения их логических и аксиоматических основ. Но основными отделами геометрии, привлекающими наиболее значительные научные силы, становятся дифференциальная и алгебраическая геометрия
. Дифференциальная геометрия евклидова трёхмерного пространства получает полное систематическое развитие в работах Э. Бельтрам
, Г. Дарбу
и других. Позднее бурно развивается дифференциальная геометрия различных более широких (чем группа евклидовых движений) групп преобразований и особенно дифференциальная геометрия многомерных пространств. Это направление геометрических исследований, получившее мощный импульс к развитию с возникновением общей теории относительности, создано прежде всего работами Т. Леви-Чивита
, Э. Картана
и Г. Вейля
. В связи с развитием более общих точек зрения теории множеств и теории функций действительного переменного теория аналитических функций
в конце 19 века лишается того исключительного положения ядра всего математического анализа, которое намечается для неё в начале и середине 19 века. Однако она продолжает не менее интенсивно развиваться как в соответствии со своими внутренними потребностями, так и из-за обнаруживающихся новых связей её с другими отделами анализа и непосредственно с естествознанием. Особенно существенным в этом последнем направлении было выяснение роли конформных отображений
при решении краевых задач для уравнений с частными производными (например, задачи Дирихле для уравнения Лапласа), при изучении плоских течений идеальной жидкости и в задачах теории упругости. Ф. Клейн и А. Пуанкаре
создают теорию автоморфных функций, в которой находит замечательные применения геометрия Лобачевского. Э. Пикар
, А. Пуанкаре, Ж. Адамар, Э. Борель
глубоко разрабатывают теорию целых функций, что позволяет, в частности, получить уже упоминавшуюся теорему о плотности расположения простых чисел. Геометрическую теорию функций и теорию римановых поверхностей развивают А. Пуанкаре, Д. Гильберт и другие. Конформные отображения находят применение в аэромеханике (Н. Е. Жуковский
, С. А. Чаплыгин
). В результате систематического построения математического анализа на основе строгой арифметической теории иррациональных чисел и теории множеств возникла новая отрасль М. — теория функций действительного переменного. Если ранее систематически изучались лишь функции, возникающие «естественно» из тех или иных специальных задач, то для теории функций действительного переменного типичен интерес к полному выяснению действительного объёма общих понятий анализа (в самом начале её развития Б. Больцано
и позднее К. Вейерштрассом было, например, обнаружено, что непрерывная функция может не иметь производной ни в одной точке). Исследования по теории функций действительного переменного привели к общим определениям понятий меры множества
, измеримых функций
и интеграла
, играющих важную роль в современной М. Основы современной теории функций действительного переменного заложили математики французской школы (К. Жордан, Э. Борель, А. Лебег
, Р. Бэр), позднее ведущая роль переходит к русской и советской школе (см. Функций теория
).