Читаем Большая Советская Энциклопедия (НЕ) полностью

  Конфигурация трёх внешних электронных оболочек атома Np 5s2 5p6 5d10 5f4 6s2 6d1 7s2 ; при образовании его химических соединений участвуют 5f , 6d и 7s -электроны. По химическим свойствам Н. во многом сходен с ураном и плутонием . В соединениях имеет степени окисления от +2 до +7. В растворах Н. образует ионы Np3+ , Np4+ , NpO2 + (наиболее устойчив), NpO2 2+ и NpO5 3- . Ионы Н. склонны к гидролизу и комплексообразованию.

  Весомые количества изотопа 237 Np образуются в качестве побочного продукта при производстве плутония в ядерных реакторах за счёт ядерных реакций урана с нейтронами. Используется Н. в основном для научно-исследовательских целей.

  Лит.: Михайлов В. А., Аналитическая химия нептуния, М., 1971. См. также лит. при ст. Актиноиды .

  С. С. Бердоносов.

Нера

Не'ра, река в Якутской АССР, правый приток р. Индигирка. Образуется при слиянии рр. Делянкир и Худжах. Длина 106 км, с наибольшей составляющей р. Делянкир 331 км, площадь бассейна 24 500 км2 . Течёт по Нерскому плоскогорью. Питание смешанное, с преобладанием дождевого. Половодье с мая по август. Средний расход воды в 65 км от устья 119 м3 /сек. Замерзает в октябре, перемерзаем с декабря — января по апрель; вскрывается в мае — начале июня. По долине Н. идёт тракт Усть-Нера — Магадан.

Неравенства (в астрономии)

Нера'венства в астрономии, то же, что возмущения небесных тел .

Неравенства (матем.)

Нера'венства (математические), соотношения между числами или величинами, указывающие, какие из них больше других. Для обозначения Н. употребляется знак <, обращенный остриём к меньшему числу. Так, соотношения 2 > 1 и 1 < 2 выражают одно и то же, а именно: 2 больше 1, или 1 меньше 2. Иногда несколько Н. записываются вместе (например, а < b < с). Желая выразить, что из двух чисел а и b первое или больше второго, или равно ему, пишут: а ³ b (или b £ а) и читают: «а больше или равно b » (или «b меньше или равно а ») либо короче: «а не меньше b » (или «b не больше а »). Запись а ¹ b означает, что числа а и b не равны, но не указывает, какое из них больше. Все эти соотношения также называются Н.

  Н. обладают многими свойствами, общими с равенствами. Так, Н. остаётся справедливым, если к обеим частям его прибавить (или от обеих частей отнять) одно и то же число. Точно так же можно умножать обе части Н. на одно и то же положительное число. Однако если обе части Н. умножить на отрицательное число, то смысл Н. изменится на обратный (т. е. знак > заменяется на <, а < на >). Из неравенства А < В и С < D следует А + С < В + D и А - D < В - С, т. е. одноимённые Н. (А < В и С < D ) можно почленно складывать, а разноимённые Н. (А < В и D > С) — почленно вычитать. Если числа А, В, С и D положительны, то из неравенств А < В и С < D следует также AC < BD и A/D < В/С, т. е. одноимённые Н. (между положительными числами) можно почленно перемножать, а разноимённые — почленно делить.

  Н., в которые входят величины, принимающие различные числовые значения, могут быть верны для одних значений этих величин и неверны для других. Так, неравенство x2 4x + 3 > 0 верно при х = 4 и неверно при х = 2. Для Н. этого типа возникает вопрос об их решении, т. е. об определении границ, в которых следует брать входящие в Н. величины для того, чтобы Н. были справедливы. Так, переписывая неравенство x2 — 4x + 3 > 0 в виде: (х — 1)(х — 3) > 0, замечают, что оно будет верно для всех х, удовлетворяющих одному из следующих неравенств: х < 1, х > 3, которые и являются решением данного Н.

  Укажем несколько типов Н., выполняющихся тождественно в той или иной области изменения входящих в них переменных.

1) Неравенство для модулей. Для любых действительных или комплексных чисел a1 , a2 ,..., an справедливо Н.

|a1 + a2 + … + an I £ Ia1 | + Ia 2 I +... + Ian |.

  2) Неравенство для средних. Наиболее известны Н., связывающие гармонические, геометрические, арифметические и квадратические средние:

  3) Линейные неравенства. Рассматривается система Н. Вида

ai1 x1 + ai2 x2 +... + ain xn (bi ³ i = 1, 2,..., m ).

  Совокупность решений этой системы Н. представляет собой некоторый выпуклый многогранник в n -мepном пространстве (x1 , x2 ,..., xn ); задача теории линейных Н. состоит в том, чтобы изучить свойства этого многогранника. Некоторые вопросы теории линейных Н. тесно связаны с теорией наилучших приближений , созданной П. Л. Чебышевым .

  См. также Бесселя неравенство , Буняковского неравенство , Гельдера неравенство , Коши неравенство , Минковского неравенство .

Перейти на страницу:

Похожие книги