Читаем Большая Советская Энциклопедия (ТЕ) полностью

  Для описания многих физических и геометрических фактов обычно вводится та или иная система координат, что позволяет описывать различные объекты при помощи одного или нескольких чисел, а соотношения между объектами — равенствами, связывающими эти числа или системы чисел. Некоторые из величин, называемые скалярными (масса, температура и т. д.), описываются одним числом, причём значение этих величин не изменяется при переходе от одной системы координат к другой (мы рассматриваем здесь физические явления с точки зрения классической физики). Другие величины — векторные (сила, скорость и т. д.), описываются тремя числами (компонентами вектора), причём при переходе от одной системы координат к другой компоненты вектора преобразуются по определённому закону. Наряду со скалярными и векторными величинами встречаются во многих вопросах физики и геометрии величины более сложного строения. Эти величины, называемые тензорными, описываются в каждой системе координат несколькими числами (компонентами тензора), причём закон преобразования этих чисел при переходе от одной системы координат к другой более сложен, чем для векторов (точные определения будут даны ниже). При введении координатной системы, помимо чисел, описывающих сам объект или физическое явление, появляются числа, описывающие его связь с выбранной системой координат. Рассмотрим, например, совокупность чисел Jij (i, j = 1, 2, 3), где Jij   — осевой момент инерции твёрдого тела относительно оси Xi , a Jij , (при i ¹j ) центробежные моменты инерции, взятые с обратным знаком. При переходе от одной системы координат к другой осевой момент инерции Jii меняется (так как меняется положение оси xi относительно тела), а потому Jii не может рассматриваться как физическая величина, имеющая независимый от выбора системы координат смысл. Это находит своё выражение, например, в том, что знание Jii в одной системе координат не позволяет найти Jii в другой системе координат. В то же время совокупность всех чисел Jij имеет смысл, независимый от выбора координатной системы. Знание всех чисел Jij в одной системе прямоугольных координат позволяет найти их в любой другой системе прямоугольных координат по формуле  ( и  — некоторые числа): здесь, как принято в Т. и., опущен знак суммы и считается, что если один и тот же индекс встречается дважды (один раз наверху, а другой раз внизу), то по нему производится суммирование, причём этот индекс принимает все возможные для него значения (в приведённом примере — значения 1, 2, 3). Т. и., как и векторное исчисление, является математическим аппаратом, при котором исключается влияние выбора координатной системы. Это достигается тем, что задание компонент тензора в какой-либо системе координат определяет их во всех других системах координат. В Т. и. указываются методы получения соотношений между тензорами и функций от компонент тензоров, не меняющихся при переходе от одной системы координат к другой (инвариантных соотношений и инвариантов).

  Т. о., одной из основных задач Т. и. является нахождение аналитических формулировок законов механики, геометрии, физики, не зависящих от выбора координатной системы.

  1. Тензоры в прямоугольных координатах. Величины, которые в каждой системе прямоугольных координат задаются в 3-мерном пространстве 3k числами   (ir = 1, 2, 3) и при замене системы координат (x1 , x2 , x3 ) системой (x’1 , x’2 , x’3 ) заменяются числами  по формулам:

  , (1)

где , называются тензорными величинами, а определяющие их системы чисел — тензорами в прямоугольных координатах (иногда тензорами называют также и сами тензорные величины). Число k называется валентностью (рангом) тензора, числа — его компонентам и (координатами). Аналогичным образом определяются тензоры в пространстве любого числа измерений.

  Примеры тензоров: если координаты вектора а обозначить ai (i = 1, 2, 3), то числа а , образуют тензор первой валентности. Любым двум векторам а = {ai } и b ={bi } соответствует тензор с компонентами pij = ai . bj . Этот тензор называется диадой. Если a (x1 , x2 , x3 ) некоторое векторное поле , то каждой точке этого поля соответствует тензор с компонентами . Он называется производной вектора а = {ai} по вектору r {x1 , x2 , хз } (обозначается также через ). Упомянутая выше совокупность чисел Jij образует тензор второй валентности (тензор инерции).

  2. Тензоры второй валентности. В приложениях Т. и. к механике, кроме тензоров первой валентности (векторов), чаще всего встречаются тензоры второй валентности.

Перейти на страницу:

Похожие книги

100 знаменитых катастроф
100 знаменитых катастроф

Хорошо читать о наводнениях и лавинах, землетрясениях, извержениях вулканов, смерчах и цунами, сидя дома в удобном кресле, на территории, где земля никогда не дрожала и не уходила из-под ног, вдали от рушащихся гор и опасных рек. При этом скупые цифры статистики – «число жертв природных катастроф составляет за последние 100 лет 16 тысяч ежегодно», – остаются просто абстрактными цифрами. Ждать, пока наступят чрезвычайные ситуации, чтобы потом в борьбе с ними убедиться лишь в одном – слишком поздно, – вот стиль современной жизни. Пример тому – цунами 2004 года, превратившее райское побережье юго-восточной Азии в «морг под открытым небом». Помимо того, что природа приготовила человечеству немало смертельных ловушек, человек и сам, двигая прогресс, роет себе яму. Не удовлетворяясь природными ядами, ученые синтезировали еще 7 миллионов искусственных. Мегаполисы, выделяющие в атмосферу загрязняющие вещества, взрывы, аварии, кораблекрушения, пожары, катастрофы в воздухе, многочисленные болезни – плата за человеческую недальновидность.Достоверные рассказы о 100 самых известных в мире катастрофах, которые вы найдете в этой книге, не только потрясают своей трагичностью, но и заставляют задуматься над тем, как уберечься от слепой стихии и избежать непредсказуемых последствий технической революции, чтобы слова французского ученого Ламарка, написанные им два столетия назад: «Назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания», – остались лишь словами.

Александр Павлович Ильченко , Валентина Марковна Скляренко , Геннадий Владиславович Щербак , Оксана Юрьевна Очкурова , Ольга Ярополковна Исаенко

Публицистика / История / Энциклопедии / Образование и наука / Словари и Энциклопедии