Читаем Большая Советская Энциклопедия (ТО) полностью

  Подмножество Х Î  тогда и только тогда является (компактным) полиэдром, когда оно представляет собой объединение (конечного) семейства выпуклых многогранников. Любой полиэдр может быть представлен в виде объединения симплексов , пересекающихся только по целым граням. Такое представление называют триангуляцией полиэдра. Каждая триангуляция однозначно определена её симплициальной схемой, то есть множеством всех её вершин, в котором отмечены подмножества, являющиеся множествами вершин симплексов. Поэтому вместо полиэдров можно рассматривать лишь симп-лициальные схемы их триангуляций. Например, по симплициальной схеме можно вычислять группы гомологий и когомологий. Это делается следующим образом:

  а) симплекс, вершины которого определённым образом упорядочены, называется упорядоченным симплексом данной триангуляции (или симплициальной схемы) К ; формальные линейные комбинации упорядоченных симплексов данной размерности n с коэффициентами из данной группы G называются n -мepными цепями; все они естественным образом составляют группу, которая обозначается символом C n (K; G) ;

  б) выбросив из упорядоченного n -мерного симплекса s вершину с номером i , 0 £ i £ n, получим упорядоченный (n— 1)-мерный симплекс, который обозначается символом s(i ) ; цепь  называется границей s; по линейности отображение  распространяется до гомоморфизма   : Cn (K; G) ® Cn -1 (K; G) ;

  в) цепи с , для которых  = 0, называются циклами, они составляют группу циклов Zn (K; G);

  г) цепи вида  называются границами, они составляют группу границ Bn (K; G) ;

  д) доказывается, что Bn (K; G) Ì Zn (K; G) (граница является циклом); поэтому определена факторгруппа

  Hn (K; G) = Zn (K; G)/ Bn (K; G) .

  Оказывается, что группа Hn (K; G) изоморфна группе гомологий Hn (X; G) полиэдра X , триангуляцией которого является К . Аналогичная конструкция, в которой исходят не из цепей, а из коцепей (произвольных функций, определённых на множестве всех упорядоченных симплексов и принимающих значения в G ), даёт группы когомологий.

  С этой конструкции, изложенной здесь в несколько модифицированной форме, и началось по существу становление алгебраической Т. В первоначальной конструкции рассматривались так называемые ориентированные симплексы (классы упорядоченных симплексов, отличающихся чётными перестановками вершин). Эта конструкция развита и обобщена в самых разнообразных направлениях. В частности, её алгебраические аспекты дали начало так называемой гомологической алгебре.

  Самым общим образом симплициальную схему можно определить как множество, в котором отмечены некоторые конечные подмножества («симплексы»), причём требуется, чтобы любое подмножество симплекса было снова симплексом. Такая симплициальная схема является симплициальной схемой триангуляции некоторого полиэдра тогда и только тогда, когда число элементов произвольного отмеченного подмножества не превосходит некоторого фиксированного числа. Впрочем, понятие полиэдра можно обобщить (получив так называемые «бесконечномерные полиэдры»), и тогда уже любая симплициальная схема будет схемой триангуляции некоторого полиэдра (называемого её геометрической реализацией).

  Произвольному открытому покрытию {U a } каждого топологического пространства Х можно сопоставить симплициальную схему, вершинами которой являются элементы U a покрытия и подмножество которой тогда и только тогда отмечено, когда элементы покрытия, составляющие это подмножество, имеют непустое пересечение. Эта симплициальная схема (и соответствующий полиэдр) называемому нервом покрытия. Нервы всевозможных покрытий в определённом смысле аппроксимируют пространство Х и, исходя из их групп гомологий и когомологий, можно посредством соответствующего предельного перехода получать группы гомологий и когомологий самого X . Эта идея лежит в основе почти всех конструкций общей теории гомологий. Аппроксимация топологического пространства нервами его открытых покрытий играет важную роль и в общей Т.

  5. Топология многообразий

  Хаусдорфово паракомпактное топологическое пространство называется n- мерным топологическим многообразием, если оно «локально евклидово», то есть если каждая его точка обладает окрестностью (называемой координатной окрестностью, или картой), гомеоморфной топологическому пространству . В этой окрестности точки задаются n числами x1 , …, xn , называемыми локальными координатами. В пересечении двух карт соответствующие локальные координаты выражаются друг через друга посредством некоторых функций, называемых функциями перехода. Эти функции задают гомеоморфизм открытых множеств в , называются гомеоморфизмом перехода.

  Условимся произвольный гомеоморфизм между открытыми множествами из  называть t -гомеоморфизмом. Гомеоморфизм, являющийся кусочно-линейным изоморфизмом, будем называть p -гомеоморфизмом, а если он выражается гладкими (дифференцируемыми любое число раз) функциями, — s -гомеоморфизмом.

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии