Читаем Большая Советская Энциклопедия (ТО) полностью

  На каждом трёхмерном топологическом многообразии при любом a = p , s также существует единственная a-структура и можно описать все гомотопические типы трёхмерных топологических многообразий (однако групп гомологий для этого уже недостаточно). В то же время до сих пор (1976) не описаны все (хотя бы компактные связные) трёхмерные топологические многообразия данного гомотопического типа. Это не сделано даже для односвязных многообразий (все они гомотопически эквивалентны сфере S 3 ). Гипотеза Пуанкаре утверждает, что любое такое многообразие гомеоморфно S 3 .

  Для четырёхмерных (компактных и связных) топологических многообразий вопрос о существовании и единственности a-структур (a = p , s ) ещё не решен, а их гомотопический тип описан только в предположении односвязности. Справедлив ли для них аналог гипотезы Пуанкаре, неизвестно.

  Замечательно, что для компактных и связных топологических многообразий размерности n ³ 5 ситуация оказывается совсем иной: все основные задачи для них можно считать в принципе решенными (точнее, сведёнными к проблемам алгебраической Т.). Любое гладкое многообразие Х вкладывается как гладкая (n -мepная) поверхность в ; и касательные векторы к Х составляют некоторое новое гладкое многообразие TX, которое называется касательным расслоением гладкого многообразия X . Вообще, векторным расслоением над топологическим пространством Х называется топологическое пространство Е, для которого задано такое непрерывное отображение p : Е ® Х , что для каждой точки х Î Х прообраз v (слой) является векторным пространством и существует такое открытое покрытие {U a } пространства X , что для любого a прообраз p—1 (U a ) гомеоморфен произведению U a ´ , причём существует гомеоморфизм p—1 (U a ) ® U a ´ , линейно отображающий каждый слой p—1 (x), x Î U a , на векторное пространство {х} ´ . При Е = TX непрерывное отображение p сопоставляет с каждым касательным вектором точку его касания, так что слоем p—1 (x) будет пространство, касательное к Х в точке х. Оказывается, что любое векторное расслоение над компактным пространством Х определяет некоторый элемент группы KO(X). Таким образом, в частности, для любого гладкого, компактного и связного многообразия Х в группе KO(X) определён элемент, соответствующий касательному расслоению. Он называется тангенциальным инвариантом гладкого многообразия X . Имеется аналог этой конструкции для любого a. При a = p роль группы KO(X) играет некоторая другая группа, которая обозначается KPL(X), а при a = t роль этой группы играет группа, обозначаемая KTop(X). Каждое a-многообразие Х определяет в соответствующей группе [КО(Х) , KPL(X) или KTop(X) ] некоторый элемент, называемый его a-тангенциальным инвариантом. Имеются естественные гомоморфизмы KO(X) ® KPL(X) ® KTop(X) , и оказывается, что на n -мерном (n ³ 5 ) компактном и связном a'-многообразии X , где a' = t , p , тогда и только тогда можно ввести a-структуру (a = р, если a' = t, и a = s, если a' = p ), когда его a'-тангенциальный инвариант лежит в образе соответствующей группы [KPL(X) при a' = t и KO(X) при a' = p ]. Число таких структур конечно и равно числу элементов некоторого фактормножества множества [X , Y a ], где Y a — некоторое специальным образом сконструированное топологическое пространство (при a = s топологическое пространство Y a обозначается обычно символом PL/O , а при a = p — символом Top/PL ). Тем самым вопрос о существовании и единственности a-структуры сводится к некоторой задаче теории гомотопий. Гомотопический тип топологического пространства PL/O довольно сложен и до сих пор (1976) полностью не вычислен; однако известно, что pi (PL/O ) = 0 при i £ 6, откуда следует, что любое кусочно-линейное многообразие размерности n £ 7 сглаживаемо, а при n £ 6 единственным образом. Напротив, гомотопический тип топологического пространства Top/PL оказался удивительно простым: это пространство гомотопически эквивалентно K (ℤ2 , 3). Следовательно, число кусочно-линейных структур на топологическом многообразии не превосходит числа элементов группы H 3 (X , ℤ2 ). Такие структуры заведомо существуют, если H 4 (X , ℤ2 ) = 0, но при H 4 (X , ℤ2 ) ¹ 0 кусочно-линейной структуры может не существовать.

  В частности, на сфере S n существует единственная кусочно-линейная структура. Гладких структур на сфере S n может быть много, например, на S 7 существует 28 различных гладких структур. На торе T n (топологических произведении n экземпляров окружности S 1 ) существует при n ³ 5 много различных кусочно-линейных структур, которые все допускают гладкую структуру. Таким образом, начиная с размерности 5, существуют гомеоморфные, но не диффеоморфные гладкие многообразия; сферы с таким свойством существуют, начиная с размерности 7.

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии