Читаем Большая Советская Энциклопедия (ТО) полностью

  Пусть a = t, p или s. Топологическое многообразие называется a-многообразием, если выбрано такое его покрытие картами, что гомеоморфизмы перехода для любых его двух (пересекающихся) карт являются a-гомеоморфизмами. Такое покрытие задаёт a-структуру на топологическом многообразии X . Таким образом, t -многообразие — это просто любое топологическое многообразие, p -многообразия называются кусочно-линейными многообразиями. Каждое кусочно-линейное многообразие является полиэдром. В классе всех полиэдров n -мерные кусочно-линейные многообразия характеризуются тем, что любая их точка обладает окрестностью, кусочно-линейно изоморфной n -мерному кубу. s -многообразия называются гладкими (или дифференцируемыми) многообразиями. a-отображением a-многообразия называются называется при a = t произвольное непрерывное отображение, при a = s — произвольное кусочно-линейное отображение, при a = s — произвольное гладкое отображение, то есть непрерывное отображение, записывающееся в локальных координатах гладкими функциями. Взаимно однозначное a-отображение, обратное к которому также является a-отображением, называется a-гомеоморфизмом (при a = s также диффеоморфизмом), a-многообразия Х и Y называются a-гомеоморфными (при a = s — диффеоморфными), если существует хотя бы один a-гомеоморфизм X ® Y . Предметом теории a-многообразий является изучение a-многообразий и их a-отображений; при этом a-гомеоморфные a-многообразия считаются одинаковыми. Теория s -многообразий является частью кусочно-линейной Т. Теория s -многообразий называется также гладкой Т.

  Основной метод современной теории многообразий состоит в сведении её задач к проблемам алгебраических Т. для некоторых нужным образом сконструированных топологических пространств. Эта тесная связь теории многообразий с алгебраической Т. позволила, с одной стороны, решить много трудных геометрических проблем, а с другой — резко стимулировала развитие самой алгебраической Т.

  Примерами гладких многообразий являются n -мерные поверхности в , не имеющие особых точек. Оказывается (теорема вложения), что любое гладкое многообразие диффеоморфно такой поверхности (при N ³ 2n + 1). Аналогичный результат верен и при a = t , p .

  Каждое p -многообразие является t- многообразием. Оказывается, что на любом s -многообразии можно некоторым естественным образом ввести p -структуру (которая называется обычно у айтхедовской триангуляцией). Можно сказать, что любое a-многообразие, где a = p или s, является a’-многообразием, где a’ = t или p . Ответ на обратный вопрос: на каких a’-многообразиях можно ввести a-структуру (такое a’-многообразие при a’ = p называется сглаживаемым, а при a’ = t —  триангулируемым), а если можно, то сколько? — зависит от размерности n.

  Существует только два одномерных топологических многообразия: окружность S1 (компактное многообразие) и прямая линия  (некомпактное многообразие). Для любого a = p , s на t -многообразиях S1 и  существует единственная a-структура.

  Аналогично, на любом двумерном топологическом многообразии (поверхности) существует единственная a-структура, и можно легко описать все компактные связные поверхности (некомпактные связные поверхности также могут быть описаны, но ответ получается более сложный). Для того чтобы поверхности были гомеоморфны, достаточно, чтобы они были гомотопически эквивалентны. При этом гомотопический тип любой поверхности однозначно характеризуется её группами гомологий. Существует два типа поверхностей: ориентируемые и неориентируемые. К числу ориентируемых принадлежит сфера S2 и тор T2 . Пусть Х и Y — два связных n -мерных a-многообразия. Вырежем в Х и Y по шару (при n = 2 — диску) и склеим получившиеся граничные сферы (при n = 2 — окружности). При соблюдении некоторых само собой разумеющихся предосторожностей в результате снова получим a-многообразие. Оно называется связной суммой a-многообразий Х и Y и обозначается X #Y. Например , T2 #T2 имеет вид кренделя. Сфера S n является нулём этого сложения, то есть  S n #X = Х для любого X . В частности, S2 #T2 = T2 . Оказывается, что ориентируемая поверхность гомеоморфна связной сумме вида S2 #T2 # #T2 , число p слагаемых T2 называется родом поверхности. Для сферы p = 0, для тора p = 1 и т. д. Поверхность рода p можно наглядно представлять себе как сферу, к которой приклеено p «ручек». Каждая неориентируемая поверхность гомеоморфна связной сумме P2 # ¼ #P2 некоторого числа проективных плоскостей P2 . Её можно представлять себе как сферу, к которой приклеено несколько Мебиуса листов .

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии