Читаем Большая Советская Энциклопедия (ВЕ) полностью

  Схема испытаний с конечным числом исходов недостаточна уже для самых простых применений В. т. Так, при изучении случайного разброса точек попаданий снарядов вокруг центра цели, при изучении случайных ошибок, возникающих при измерении какой-либо величины, и т.д. уже невозможно ограничиться испытаниями с конечным числом исходов. При этом в одних случаях результат испытания может быть выражен числом или системой чисел, в других — результатом испытания может быть функция (например, запись изменения давления в данной точке атмосферы за данный промежуток времени), системы функций и т.п. Следует отметить, что многие данные выше определения и теоремы с незначительными по существу изменениями приложимы и в этих более общих обстоятельствах, хотя способы задания распределений вероятностей изменяются (см. Распределения , Плотность вероятности ).

  Наиболее серьёзное изменение претерпевает определение вероятности, которое в элементарном случае давалось формулой (2). В более общих схемах, о которых идёт речь, события являются объединениями бесконечного числа исходов (или, как говорят, элементарных событий), вероятность каждого из которых может быть равна нулю. В соответствии с этим свойство, выраженное теоремой сложения, не выводится из определения вероятности, а включается в него.

  Наиболее распространённая в настоящее время логическая схема построения основ В. т. разработана в 1933 советским математиком А. Н. Колмогоровым. Основные черты этой схемы следующие. При изучении какой-либо реальной задачи — методами В. т. прежде всего выделяется множество U элементов u, называемых элементарными событиями. Всякое событие вполне описывается множеством благоприятствующих ему элементарных событий и потому рассматривается как некое множество элементарных событий. С некоторыми из событий А связываются определённые числа Р (A ), называемые их вероятностями и удовлетворяющие условиям

  1. 0 £ Р (А ) £ 1,

  2. P (U ) = 1,

  3. Если события A1 ,..., An попарно несовместны и А — их сумма, то

  Р (А ) = Р (A1 ) + P (A2 ) + … + Р (An ).

  Для создания полноценной математической теории требуют, чтобы условие 3 выполнялось и для бесконечных последовательностей попарно несовместных событий. Свойства неотрицательности и аддитивности есть основные свойства меры множества. В. т. может, таким образом, с формальной точки зрения рассматриваться как часть меры теории . Основные понятия В. т. получают при таком подходе новое освещение. Случайные величины превращаются в измеримые функции, их математические ожидания — в абстрактные интегралы Лебега и т.п. Однако основные проблемы В. т. и теории меры различны. Основным, специфическим для В. т. является понятие независимости событий, испытаний, случайных величин. Наряду с этим В. т. тщательно изучает и такие объекты, как условные распределения, условные математические ожидания и т.п.

  Предельные теоремы. При формальном изложении В. т. предельные теоремы появляются в виде своего рода надстройки над ее элементарными разделами, в которых все задачи имеют конечный, чисто арифметический характер. Однако познавательная ценность В. т. раскрывается только предельными теоремами. Так, Бернулли теорема показывает, что при независимых испытаниях частота появления какого-либо события, как правило, мало отклоняется от его вероятности, а Лапласа теорема указывает вероятности тех или иных отклонений. Аналогично смысл таких характеристик случайной величины, как её математическое ожидание и дисперсия, разъясняется законом больших чисел и центральной предельной теоремой (см. Больших чисел закон . Предельные теоремы теории вероятностей).

  Пусть

  X1 , Х2 ,..., Xn , ...     (7)

— независимые случайные величины, имеющие одно и то же распределение вероятностей с EXk = а,   DXk = s2 и Yn — среднее арифметическое первых n величин из последовательности (7):

  Yn = (X1 + X2 + … +Xn )/n.

  В соответствии с законом больших чисел, каково бы ни было e > 0, вероятность неравенства |Yn — a| £ e имеет при n ®¥ пределом 1, и, таким образом, Yn как правило, мало отличается от а. Центральная предельная теорема уточняет этот результат, показывая, что отклонения Yn от а приближённо подчинены нормальному распределению со средним 0 и дисперсией s2 / n. Таким образом, для определения вероятностей тех или иных отклонений Yn от а при больших n нет надобности знать во всех деталях распределение величин Xn , достаточно знать лишь их дисперсию.

Перейти на страницу:

Похожие книги