Читаем Большая Советская Энциклопедия (ВЕ) полностью

  Обзоры и монографии . Гнеденко Б. В. и Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за тридцать лет. 1917—1947. Сб. ст., М. — Л., 1948; Колмогоров А. Н., Теория вероятностей, в кн.: Математика в СССР за сорок лет. 1917—57. Сб. ст., т. 1, М., 1959; Колмогоров А. Н., Основные понятия теории вероятностей, пер. с нем., М.—Л., 1936; его же, Об аналитических методах в теории вероятностей, «Успехи математических наук», 1938, в. 5, с. 5—41; Хинчин А. Я., Асимптотические законы теории вероятностей, пер. с нем., М.—Л., 1936; Гнеденко Б. В. и Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М.—Л., 1949; Дуб Дж. Л., Вероятностные процессы, пер. с англ., М., 1956: Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Прохоров Ю. В., Розанов Ю. А., Теория вероятностей, М., 1967.

  Ю. В. Прохоров, Б. А. Севастьянов.

Вероятностная бумага

Вероя'тностная бума'га нормальная, специальным образом разграфленная бумага, построенная так, что график функции нормального распределения изображается на ней прямой линией. Это достигается изменением шкалы на вертикальной оси (см. рис. ). На свойстве «выпрямления» основан простой способ проверки гипотезы о принадлежности данной выборки к нормальной совокупности: если построенная на В. б. эмпирическая функция распределения хорошо приближается прямой линией, то можно с основанием полагать, что совокупность, из которой взята выборка, является приближённо нормальной. Достоинство этого метода состоит в том, что вывод о принадлежности к нормальной совокупности можно сделать без знания численных значений параметров гипотетического распределения.

  Лит.: Арлей Н., Бух К. P., Введение в теорию вероятностей и математическую статистику, пер. с англ., М., 1951; Dixon W. J., Massey F. J., Introduction to statistical analysis, N. Y. — Toronto — L., 1957.

  А. В. Прохоров.

Образец вероятностной бумаги. Проведённая линия — график функции нормального распределения со средним 100 и стандартным отклонением 8.

Вероятностная логика

Вероя'тностная ло'гика, логическая система, в которой высказываниям (суждениям, утверждениям, предложениям), помимо истины и лжи, приписываются «промежуточные» истинностные значения, называемые вероятностями истинности высказываний, степенями их правдоподобия, степенями подтверждения и т.п. Поскольку понятие вероятности естественно соотносить некоторым событиям , а наступление или не наступление события есть факт, допускающий (хотя бы в принципе) эмпирическую проверку (в широком смысле — включая так называемый мысленный эксперимент, а также вывод из знания о наступлении или не наступлении др. событий), то В. л. представляет собой уточнение индуктивной логики . Взаимные переходы от языка высказываний к языку событий и обратно совершаются настолько естественно, что выглядят почти тривиальными: каждому событию сопоставляется высказывание о его наступлении, а высказыванию сопоставляется событие, состоящее в том, что оно оказалось истинным. Специфика В. л. (даже полностью формализованной в логико-математических терминах) состоит в принципиальной неустранимости неполной достоверности («относительной истинности») посылок и выводов, присущей всякому индуктивному познанию.

  Проблематика В. л. развивалась уже по существу в древности (например, Аристотелем), а в новое время — Г. В. Лейбницем , Дж. Булем , У. С. Джевонсом, Дж. Венном .

  Как логическая система, В. л. — разновидность многозначной логики : истинным высказываниям (достоверным событиям) приписывается истинностное значение (вероятность) 1, ложным высказываниям (невозможным событиям) — значение 0; гипотетическим же высказываниям может приписываться в качестве значения любое действительное число из интервала (0, 1). Вероятность гипотезы, зависящая как от её содержания (формулировки), так и от информации об уже имеющемся знании («опыта»), есть их функция . Над истинностными значениями (вероятностями) гипотез определяются логические операции : конъюнкция (соответствующая умножению событий в теории вероятностей) и дизъюнкция (соответствующая сложению событий); мерой (значением) отрицания гипотезы является вероятность события, состоящего в её неподтверждении. Значения гипотез образуют при этом так называемую нормированную булеву алгебру, сравнительно простой и хорошо разработанный аппарат которой позволяет легко аксиоматизировать теорию вероятностей и является простейшим вариантом В. л.

Перейти на страницу:

Похожие книги