Читаем Человеческое познание его сферы и границы полностью

Этот принцип, если его принять, позволяет нам выводить правдоподобность из математической вероятности и делает все предложения математической теории пригодными для измерения степеней правдоподобия в случаях, к которым применима математическая теория.

Попробуем применить вышеупомянутый принцип к случаю с числом n шаров в сумке, где известно, что каждый шар или белый, или черный; стоит вопрос: какова вероятность, что в сумке содержится х белых шаров? Лаплас допускал, что каждое значение x от 0 до A равно вероятно, так что вероятность данного х есть 1/(n + 1). С чисто математической точки зрения это правильно, если только мы начинаем с пропозициональной функции: х = число белых шаров. Но если мы начинаем с пропозициональной функции: х есть белый шар, то мы получим совсем другой результат. В этом случае имеется много способов получения х шаров. Первый шар может быть получен n способами; когда он получен, следующий может быть получен n — 1 способами и так далее Таким образом, число способов получения х шаров есть

Это есть число способов, которыми может быть получено х белых шаров. Чтобы получить вероятность числа х белых шаров, мы должны разделить это число на сумму чисел способов получения 0 белых шаров, или 1, или 2, или 3, или … или n. Легко показать, что сумма равна 2». Следовательно, шанс получить ровно х белых шаров достигается в результате деления вышеупомянутого числа на 2». Назовем его «p (A, r) ".

Этот шанс имеет максимум, когда х = 1/2n, если n четное число, или когда х = 1/2n +- 1/2, если n есть нечетное число. Его значение, когда х или n-х мало, очень мало, если n — большое. С чисто математической точки зрения эти два очень различных результата одинаково правильны. Но когда мы подходим к измерению степеней правдоподобия, между ними обнаруживается большая разница Допустим, что у нас независимо от цвета есть какой-либо способ, с помощью которого мы можем различать шары; например, пусть они последовательно вынимаются из сумки и назовем первый вынутый d1, второй вынутый d2; и так далее Обозначим через «a " «белые», через «b» «черные» и поставим 'fa» вместо «белый цвет есть цвет a», «fb» вместо 'черный цвет есть цвет а1». Данные говорят, что верно или fa или fb, но не оба. Это симметрично, и, следовательно, на основании свидетельства данных fa и fb имеют одинаковое правдоподобие, то есть «d1 — белый» и «d1 — черный» имеют одинаковое правдоподобие. Это же самое рассуждение применимо к d2, d3, …, dn. Таким образом, для каждого шара степени правдоподобия белого и черного равны. И, следовательно, как показывает простое вычисление, степень правдоподобия х белых шаров есть p (n, r), где предполагается, что х лежит между 0 и n, включая и их самих.

Следует отметить, что в измерении степеней правдоподобия мы предполагаем, что данные не только верны, но и исчерпывающи по отношению к нашему знанию, то есть мы предполагаем, что мы не знаем ничего относящегося к делу, кроме того, что упоминается в данных. Следовательно, для данного человека в данное время существует только одно правильное значение для степени правдоподобия данного предложения, тогда как в математической теории многие значения одинаково правильны в отношении многих различных данных, которые могут быть чисто гипотетическими.

В применении результатов математического исчисления вероятности к степеням правдоподобия мы должны тщательно выполнять два условия. Во-первых, случаи, которые образуют основу математического перечисления, все должны быть равно правдоподобны по свидетельству в их пользу; во-вторых, свидетельство должно включать все наше относящееся к нему знание. Следует сказать несколько слов в отношении первого из этих условий.

Каждое математическое исчисление вероятности начинает с какого-либо основоположного класса, вроде определенного числа бросаний монеты, определенного числа бросаний игральных костей, колоды карт, совокупности шаров в сумке. Каждый член этого основоположного класса считается за единицу. Из него вывели другие логически производные классы, например класс n последовательностей 100 бросаний монеты. Из этих n последовательностей мы можем выделить подкласс бросаний, состоящий из 50 выпадений монеты лицевой стороной и 50 — упавших оборотной стороной. Или, взяв колоду карт, мы можем образовать класс возможных «игроков», то есть наборов из 13 карт, и далее исследовать, какие из них содержат 11 карт одной масти. Дело в том, что частоты исчисляются, всегда применяются к классам, имеющим какую-то структуру, определяемую логически по отношению к основоположному классу, тогда как основоположный класс в целях разрешения проблемы рассматривается как состоящий из членов, не имеющих логической структуры, то есть их логическая структура не относится к делу.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже