Читаем Число, пришедшее с холода. Когда математика становится приключением полностью

Но это лишь начало парадоксов «гостиницы Гильберта». Теперь представим себе, что номера заняты, а перед подъездом гостиницы остановился автобус с бесконечным множеством новых гостей. Вся эта бесчисленная толпа стоит у стойки гостиницы и с нетерпением ждет ключей от вожделенного номера. Но как быть, если все номера уже заняты? Администратор, однако, находит решение: каждый живущий в гостинице постоялец переезжает в комнату, номер которой в два раза больше номера комнаты, в которой он проживает. Таким образом, постоялец из первого номера переезжает во второй номер, постоялец из второго номера — в четвертый, из третьего номера — в шестой и так далее. Каждый постоялец легко находит новую комнату, потому что для того, чтобы ее найти, надо всего лишь умножить на два номер старой комнаты. Таким образом, все постояльцы, уже бывшие в гостинице, переселяются в четные номера, а новоприбывшие занимают бесчисленное множество нечетных номеров.

Но дальше дела идут еще чуднее. Теперь мы допустим, что к гостинице неожиданно подъезжает бесчисленное множество автобусов, останавливающихся на исполинской парковке. В каждом автобусе — ряд за рядом — сидят бесчисленные пассажиры. Всех этих людей, число которых — «бесконечность, помноженная на бесконечность», надо разместить в гостинице, каждого в отдельный номер. И это невзирая на то, что «гостиница Гильберта» забита до отказа. Однако администратор, несомненно, обладает недюжинным математическим талантом и находит удачное решение и в этот раз. Живущих в отеле гостей просят покинуть номера с вещами и собраться в гостиничном ресторане. Пассажиров первого автобуса администратор направляет в комнаты с номерами 2, 4, 8, 16, 32, 64, …, то есть последовательность номеров представляет собой последовательность степеней числа 2. Пассажиров второго автобуса расселяют по комнатам с номерами 9, 27, 81, 243, …, то есть в комнаты, последовательность номеров которых является последовательностью степеней числа 3. Пассажиров третьего автобуса расселяют в комнаты, номера которых представляют собой последовательность степеней числа 5, то есть номера 5, 25, 125, 625, …. Теперь система становится понятной: пассажиров каждого следующего автобуса расселяют в номера, последовательность которых является последовательностью степеней каждого следующего простого числа. Так как последовательность простых чисел бесконечна, то администратор без проблем размещает в гостинице всех без исключения новоприбывших на бесконечном числе автобусов. При этом такое же бесчисленное множество комнат остается свободными, например комнаты с номерами 1, 6, 10, 12, 14, 15, ….

То есть свободными остались первый номер и все комнаты, номера которых делятся не только на какое-то единственное простое число. В эти свободные номера можно теперь переселить покинувших свои номера после прибытия новичков постояльцев, ожидающих в гостиничном ресторане.

Однако усложним картину и превратим «гостиницу Гильберта» в «отель Гильберта с почасовой оплатой». Представим себе, что ровно в полночь, то есть в ноль часов, к пустому отелю подъезжает автобус с бесчисленным количеством пассажиров. Первый из них входит в отель и получает комнату под номером 1, но ровно через один час он покидает комнату, выходит из отеля и возвращается в автобус. В этот момент, то есть через один час, в отель входят следующие два пассажира и, поскольку первый гость уже покинул отель, получают комнаты под номерами 1 и 2. Они, однако, остаются в отеле ровно полчаса, после чего возвращаются в автобус, а им на смену в отель входят четыре пассажира. Этих четверых селят в комнатах с номерами 1, 2, 3, 4, но в этих комнатах они задерживаются всего на четверть часа. Через один час сорок пять минут после прибытия автобуса эти постояльцы пулей вылетают из отеля, возвращаются в автобус, а им на смену уже бегут восемь следующих пассажиров. Как мы видим, эти непрерывные входы и выходы становятся каждый раз все более захватывающими: каждый временной интервал, в течение которого гости пребывают в номерах, становится вдвое короче временного интервала, в течение которого в номерах пребывала предыдущая «смена», причем навстречу каждой выходящей «смене» спешит другая, численность которой вдвое больше. Что, однако, произойдет ровно в два часа ночи, в тот момент времени, когда временные интервалы станут невероятно сжатыми? Будет ли к этому моменту отель заполнен до отказа, ибо в каждый данный момент в отель входят в два раза больше людей, чем выходят из него? Или, наоборот, отель в этот момент будет пуст, ибо все побывавшие в нем пассажиры автобуса уже покинули отель?

Или — здесь, возможно, и зарыта собака — эта ситуация становится настолько неправдоподобно гротескной, что такой вопрос просто лишается всякого смысла? Не взрывает ли этот пример все глубокомысленные разговоры о природе бесконечного?

<p>Бесконечная игра в вопросы и ответы</p>
Перейти на страницу:

Похожие книги