Именно поэтому две не являющиеся параллельными прямые пересекаются даже в том случае, если точку пересечения не удается изобразить ввиду малости листа бумаги, на которую нанесены прямые. Мы в любом случае можем точно указать место точки их пересечения — только потому, что она существует в наших мыслях. Но что будет с параллельными прямыми? Можно ли говорить и в этом случае о точке пересечения? Очевидно, нет, потому что, если бы даже она и существовала, то находилась бы в бесконечности. Но допустимо ли представлять себе, что точка пересечения параллельных прямых находится в бесконечности? Как вообще помыслить себе бесконечность?
Размышления и вопросы такого рода заставили Гильберта систематически упорядочить законы геометрического мышления. Для этого он поступил приблизительно так же, как Евклид более чем за две тысячи лет до него: во главу угла своей геометрии Гильберт уложил «аксиомы», утверждения, которые надо принять безоговорочно для того, чтобы корректно заниматься геометрией. Первая из двадцати аксиом гласит: «Две не совпадающие между собой точки всегда определяют прямую», на которой они лежат. За первой следует вторая аксиома: «Любые две не совпадающие между собой точки прямой определяют эту прямую». В качестве третьей аксиомы Гильберт формулирует следующее утверждение: «На одной прямой всегда существуют по крайней мере две точки; на одной плоскости всегда существуют по крайней мере три точки, не лежащие на одной прямой».
Каждую аксиому Гильберт иллюстрирует грубым эскизом, наглядно сообщающим содержание аксиомы, — некоторые из этих эскизов и утверждений настолько банальны, что вызывают искреннее удивление: зачем вообще упоминать о таких очевидных вещах? Ответ самого Гильберта гласит: нельзя соблазняться чувственным впечатлением! В геометрии, какой представлял ее себе Гильберт, явное, чувственное впечатление играет второстепенную, поясняющую, но ни в коем случае не определяющую роль. Утверждения геометрии можно считать доказанными только в тех случаях, когда доказательство опирается на двадцать упомянутых аксиом. Все остальное не считается доказательством.
«Но вы все же описываете точки, прямые и плоскости таковыми, какие они есть; почему они не имеют никакой ценности в ваших глазах?» — может спросить Гильберта скептически настроенный читатель.
«Это прекрасно, — ответил бы Гильберт, — что вы воспринимаете точки, прямые и плоскости именно так, как я их описываю в аксиомах. Но я не требую ни от кого, кто занимается геометрией, правильного “восприятия” того, о чем идет речь, когда говорят о точке, прямой или плоскости. Все эти представления можно выражать как угодно, словами самого экзотического языка[28]. Другими словами, меня вообще не интересует сущность точек, линий и плоскостей — меня интересует, чтобы все, что называют точкой, прямой или плоскостью, подчинялось моим аксиомам. Этого вполне достаточно».
Составляя список из двадцати аксиом, Гильберт хотел достичь и достиг двоякой цели.
Во-первых, ему удалось доказать, что эта система аксиом обладает
Во-вторых, Гильберту удалось доказать, что эта система аксиом
Гильберт достиг обеих целей, так как смог доказать: его система геометрических аксиом полна и непротиворечива, потому что
Но мог ли Гильберт быть уверенным в том, что счет с помощью чисел с бесконечным десятичным представлением является полным и непротиворечивым? Дело в том, что в данном случае речь идет не об обычном счете.
Числа с бесконечным десятичным представлением
Бесполезно дискутировать с человеком, который сомневается в том, что шестью семь равно сорок два. Счет с помощью чисел 1, 2, 3, … обладает, говоря словами Германа Вейля, «характером ясного, достаточного в самом себе убеждения, порожденного абсолютно прозрачной очевидностью». Никто не испытывает ни малейшего сомнения в твердо установленных действиях с целыми числами, каковые можно складывать, вычитать и умножать. Решение о том, какое из двух чисел больше, всегда является однозначным. Деление подчиняется железным и абсолютно непоколебимым правилам.