Читаем Число, пришедшее с холода. Когда математика становится приключением полностью

Пьер-Симон Лаплас перенес эти рассуждения на движение всех атомов во Вселенной. Согласно Лапласу, все в нашем мире — от взмаха крыльев насекомого и извержения Везувия до взрыва сверхновой звезды — определяется уравнениями. Не существует ничего, где в конечном счете математика не определяла бы правила игры. Даже после того, как теория относительности и квантовая теория внесли исправления в уравнения Ньютона, в принципе это высказывание осталось безусловно верным. В квантовой теории физическая система — будь то атом, молекула ДНК, кот в ящике, облако и все что угодно еще, описывается таинственной греческой буквой ψ, пси. Эта буква содержит всю информацию относительно системы. Пси не подчиняется ничему и никому, кроме математики, ибо повинуется только одному математическому уравнению, названному в честь Эрвина Шредингера[27].

Следовательно, математика действительно проникает во все на свете явления. И сама она, по твердому и непоколебимому убеждению математического гения Гильберта, противоречит утверждению Дюбуа-Реймона. Гильберт очень страстно сформулировал свое кредо: «В наших душах звучит вечный призыв: здесь есть проблема. Ищи ее решение! Ты найдешь его путем чистого размышления, ибо в математике не существует “ignoramus et ignorabimus”».

<p>Гильберт изгоняет геометрическое восприятие</p>

Еще до 1900 г. Гильберт показал изумленному научному миру, как именно удается математике стать повелительницей реальности.

Книга по геометрии, которую Евклид написал в III в. до н. э., во времена Гильберта все еще оставалась учебником для высшей школы, и до конца XIX столетия все ученые были убеждены в том, что, говоря о «точках», «отрезках», «окружностях», «треугольниках» или «квадратах», они имеют в виду нечто раз и навсегда устоявшееся и установленное. Есть и инструмент, с помощью которого можно конструировать и строить эти предметы, а именно циркуль и линейка. Если в плоскости чертежа находятся две удаленные друг от друга точки, то надо приложить к ним линейку и провести прямую, которой будут принадлежать обе точки. Ясно также, как надо установить циркуль в одну из точек, раскрыть его так, чтобы его вторая ножка достигла второй точки, а затем провести окружность, центр которой расположен в первой точке, а сама окружность проходит через вторую точку.

Но как, имея данную окружность, построить с помощью циркуля и линейки квадрат, площадь которого была бы равна площади этого круга? Это знаменитый вопрос о «квадратуре круга», который в наше время воспринимают как метафору.

Гильберт «разрешает» квадратуру круга, при этом рассматривая проблему с двух точек зрения, и прежде всего — с точки зрения вспомогательных средств, имеющихся в нашем распоряжении. Здесь Гильберт мог опереться на работу своего бывшего учителя, профессора Кенигсбергского университета, перебравшегося позднее, в 1893 г., в Мюнхен, Фердинанда фон Линдемана, который раз и навсегда доказал: никогда не удастся с помощью циркуля и линейки разрешить проблему квадратуры круга.

Тем не менее утверждение фон Линдемана, несмотря на негативное выражение, ни в коей мере не противоречит лозунгу Гильберта о том, что математика не приемлет «ignorabimus». Это утверждение сообщает нам некоторое знание, а именно знание о том, что невозможно ни в коем случае. Так же невозможно, как, допустим, назвать 5 четным числом.

Кроме того, Гильберт рассматривает квадратуру круга с точки зрения объектов «круг» и «квадрат» как таковых. При таком подходе можно говорить о том, что для каждого круга существует квадрат равной ему площади. Еще в 1685 г. польский математик Адам Коханский изобрел изящное построение с помощью циркуля и линейки; Коханскому удалось построить на круге почти равный ему по площади квадрат. Толщина карандашной линии, шероховатость бумаги и несовершенство человеческого органа зрения не позволяли заметить разницу в площадях, настолько приблизился Коханский своим построением к идеалу. Приблизился почти вплотную. Пусть даже ему и не удалось в точности воспроизвести такой квадрат, все же в мыслях он существует.

Это была решающая идея, запавшая в душу Гильберта: геометрические объекты присутствуют не в своей чувственно воспринимаемой форме — они становятся для нас явными только потому, что мы можем их себе помыслить. Чувственно воспринимаемое изображение на листе бумаги есть лишь наглядное отражение этого мысленного образа. Так же думал когда-то Платон: не построенный на бумаге, а созданный в мыслях треугольник является по-настоящему «истинным», ибо только воображаемый умом треугольник может соответствовать своему идеалу.

Перейти на страницу:

Похожие книги