Аналогичным образом буквами R и г обозначаются соответственно радиусы описанной (рисунок 2) и вписанной окружностей (рисунок 3).
— Использование первых букв алфавита (обычно строчных) — а, b, с, d — для обозначения известных величин в уравнениях, и последних — х, у, z, v — для неизвестных величин.
— Сокращенные латинские формы sin, cos, tang, cot, sec и cosec Эйлер впервые использовал в 1748 году в своей книге "Введение в анализ бесконечно малых" для обозначения тригонометрических функций. Затем они были адаптированы к разным языкам, хотя сейчас фактически универсальным является их английский вариант: sin х, cos х, tan х (в русской традиции tg x), cot х (или ctg х), sec х и cosec х.
— Обозначение для конечных разностей: это вычислительный инструмент, немного похожий на производные. Он не использует понятие предела и так называемые бесконечно малые. Конечные разности встречаются уже у Ньютона (1642-1727), Джеймса Грегори (1638-1675) и Колина Маклорена (1698-1746) и позволяют вычислять неизвестные многочлены на основе их значений, а также интерполировать и изучать последовательности и ряды. Изобретение компьютеров сделало их еще полезнее. Эйлер посвятил много сил изучению конечных разностей. Их обозначения, которые сегодня встречаются в книгах, принадлежат ему. В самом простом случае для последовательности {ui} разность двух соседних членов будет обозначаться ∆:
∆uk = uk+1 - uk.
Последующие конечные разности (второго порядка ∆2, третьего порядка ∆3, четвертого порядка ∆4 и так далее) определяются, исходя из разностей первого порядка с помощью рекурсии, то есть каждая использует предыдущую:
∆puk = ∆(∆p-1uk).
Таким образом строго определяются конечные разности любого порядка — ∆, ∆2, ∆3,... — и с ними можно работать.
В серии работ, начатых еще в Базеле, Эйлер открыл формулу комплексных чисел, впоследствии ставшую знаменитой. Он использовал ее для нахождения значения математической категории, до той поры неизвестной, — отрицательных логарифмов. Как мы уже сказали, для обозначения мнимой единицы, √-1, Эйлер использовал символ i.
С этого момента подразумевается, что если в арифметической формуле есть i, то
i= √-1.
Во время работы в Базеле Эйлер открыл формулу
exi = cos x + isin x
и преобразовал ее так, как только он, великий жонглер символами, был способен. Из этого простого выражения, известного как формула Эйлера, которое связывает комплексные числа с тригонометрией, в последующие столетия произошла, как мы увидим в главе 3, большая часть математического анализа.
Во времена Эйлера пользовались большой популярностью логарифмы — инструмент вычисления, открытый в XVI веке. Однако их потенциал оставался невостребованным вплоть
до появления работ швейцарского ученого. Представим их определение: если а положительное число, называемое основанием, N также положительное число и верно равенство
N = αx,
то говорится, что х — логарифм N и пишется х = log2N. Или:
N = αlogN.
Если основание логарифма — число е, то пишется In N вместо log N.
Число -1 можно записать как -1 =1 + 0i и, следовательно, рассматривать его в качестве комплексного числа. Подставим его в формулу Эйлера:
-1 = 1 + 0i = cosπ + isinπ = exi.
Теперь рассмотрим только начало и конец этого равенства и используем натуральный логарифм:
In(-1) = In(exi) = πi.
Таким образом, Эйлер получил точное значение натурального логарифма от -1, отрицательного числа. На этом ученый приостановил интеллектуальную атаку на данную область и уехал в Санкт-Петербург. Только в 1751 году, почти 25 лет спустя, Эйлер обнародовал этот результат в надлежащем виде вместе со многими другими в фундаментальном труде "Введение в анализ бесконечно малых".
Как древние воины, которые продолжали выпускать стрелы даже при отступлении, Эйлер уехал в Россию и отложил изучение отрицательных логарифмов, продемонстрировав, тем не менее, свое будущее оружие.
ГЛАВА 2
Ряды, постоянные и функции: Эйлер в России