Другая проблема заключается в том, что открытый и беззащитный генетический материал митохондрий находится в непосредственной близости к ЭТЦ, в которой формируются и из которой исходят разрушительные свободные радикалы. Они могут повредить мДНК и вызвать мутации, потенциально способные привести к гибели митохондрии (что, в свою очередь, означает повышенную опасность возникновения разных заболеваний, включая рак, о чем мы поговорим позже).
Почему же все митохондриальные гены не переместились в ядро? Факт, что они до сих пор находятся в митохондриях (несмотря на два миллиарда лет эволюции и множество разумных причин, по которым им
Суть в необходимости контроля процесса окислительного фосфорилирования. Его скорость в значительной степени обусловлена энергетическими потребностями клетки, зачастую меняющимися каждую минуту (в зависимости от того, бодрствуем мы или спим, занимаемся физическими упражнениями или сидим за столом, боремся с болезнью или пышем здоровьем и т. д.). Эти быстро изменяющиеся сценарии требуют от митохондрий адаптировать производство энергии к потребностям клетки, а каждая клетка требует к себе особого подхода (у клеток головного мозга, мышц, кишечника, печени и т. д. — разные уровни потребления энергии).
Для того чтобы эффективно реагировать на эти быстрые изменения, митохондриям приходится поддерживать определенный уровень постоянного контроля ситуации, а значит, сохранять в мДНК соответствующие гены. Реакции, которые происходят в рамках ЭТЦ во внутренней митохондриальной мембране, должны жестко регулироваться на уровне каждой митохондрии. Но это было бы невозможно, равно как и клетка не смогла бы быстро реагировать на резкие изменения во внешней среде, если бы весь процесс не контролировался бы дистанционно генами, расположенными в удалении от клеточного ядра.
Вроде бы пока наши рассуждения осмыслены, не так ли? Давайте теперь обсудим тему спроса и предложения перед тем, как я предложу вам глубже погрузиться в вопрос о том, почему митохондрии сохранили некоторые гены. Не забывайте, что целостный процесс выработки энергии от работы индивидуальных комплексов до производства АТФ АТФ-синтазой похож на последовательность переключения передач в автомобиле, при которой каждая предыдущая передача контролирует скорость движения при следующей. Если потребность клетки в энергии является сильной, то электроны быстро переносятся по ЭТЦ, протоны оперативно выкачиваются через мембрану, протонный градиент резко повышается (резервуар наполняется). Чем выше он, тем сильнее давление, приводящее к производству АТФ АТФ-синтазой.
Однако, если потребность в АТФ практически равна нулю, окислительное фосфорилирование все равно будет продолжаться до того, как в АТФ будут превращены все АДФ и все фосфаты. Так как клетка больше не использует АТФ (которая при сжигании обратно расщепляется на АДФ и фосфаты), АТФ-синтаза прекращает работу из-за дефицита сырья. Если это происходит, то протоны уже не могут пройти сквозь нее, и протонный резервуар наполняется чрезмерно высоко. Когда протонный градиент является слишком высоким, небольшое количество энергии, выделяемое при переносе электронов по ЭТЦ, оказывается недостаточным для выкачивания протонов из матрикса в межмембранное пространство. Недостаточная работа протонного насоса приводит сначала к замедлению, а потом и к остановке переноса электронов по ЭТЦ. Однако не беспокойтесь, механизм вновь начинает работать, когда потребность клетки в энергии повышается и клетка начинает использовать АТФ (в результате чего АТФ-синтаза получает больше АДФ и фосфатов). Все это указывает на важность физических упражнений, при которых клетка активно использует АТФ (мы еще поговорим об этом).
Клетка может испытывать дефицит в кислороде, например при остром нарушении мозгового кровообращения. В этом случае на завершающем этапе ЭТЦ отсутствует «приемник» электронов, и в результате они попадают, так сказать, в «пробку», после чего окислительное фосфорилирование останавливается. В каждой из такого рода ситуаций формирование «пробки» из электронов означает, что они могут ускользнуть и стать причиной появления свободных радикалов.