Такие быстрые и локализованные процессы протекают в каждой из тысячи митохондрий нашей клетки: часть из них нуждается в новых комплексах I, часть — в новых комплексах III, а части нужно понизить протонный градиент. Поэтому, как бы дорого клетке ни обходилось содержание десятков тысяч копий митохондриальной ДНК, альтернатива окажется гораздо более затратной и, более того, опасной.
Давайте еще раз углубимся в дебри фундаментальной науки. Комплексы ЭТЦ состоят из большого количества отдельных белковых субъединиц, и не все эти субъединицы кодируются мтДНК. Из 46 субъединиц комплекса I, 4 субъединиц комплекса II, 11 субъединиц комплекса III и 13 субъединиц комплекса IV (всего 74 белковых субъединицы) только 13 синтезируются митохондриальной ДНК. Остальные все-таки кодируются ядерной ДНК. Отсюда следует, что комплексы ЭТЦ представляют собой микс белков, кодируемых двумя геномами.
Этот факт вновь заставляет нас задать вопрос: как митохондрии, сохранившие контроль только за частью генов, необходимых для производства комплексов ЭТЦ, контролируют свою судьбу? Данные современных научных исследований говорят о том, что комплексы ЭТЦ собирают себя вокруг некоторого количества критически важных белковых субъединиц. Эти субъединицы укореняются во внутренней мембране митохондрии и начинают работать в качестве магнита, притягивающего к себе остальные субъединицы в соответствии с определенной структурой. К счастью, митохондриальная ДНК кодирует именно базовые субъединицы, и, стало быть, митохондрии
В силу того что клетка обладает множеством митохондрий (как мы помним, в некоторых клетках их сотни, а в других — тысячи), общее количество укореняемых во внутренней мембране базовых субъединиц остается приблизительно одним и тем же. Зеркально стабильной является и работа ядерной ДНК, а также общая скорость транскрипции, что позволяет каждой конкретной митохондрии контролировать скорость окислительного фосфорилирования в своих ЭТЦ, тогда как яДНК контролирует скорость производства энергии в клетке как целостной системе.
Однако мы не можем игнорировать тот факт, что
Мутации митохондрий: начало конца
Со временем мутации мтДНК накапливаются. Речь идет о безвозвратной потере нормальной последовательности ДНК, которая после этого кодирует дефектные белки, не выполняющие жизненно важные для клетки функции.
Если мутации затрагивают любой из белков в митохондриальной ЭТЦ, то скорость появления свободных радикалов возрастает и ситуация может быстро выйти из-под контроля. К сожалению, преимущество находится на стороне супероксидов, а они активно разрушают гены составляющих ЭТЦ белков. Это обусловлено тем, что мтДНК расположена рядом с участками особенно интенсивной генерации свободных радикалов. Кроме того, в отличие от ядерной ДНК, митохондриальная ДНК не защищена слоем гистонов; ее восстановительные механизмы очень несовершенны, и она не обладает «мусорной» ДНК (гены плотно упакованы рядом друг с другом, и поэтому любая мутация оказывает отрицательный эффект на всю микросистему). Разрушение входящих в мтДНК генов — лишь дело времени, а это неизбежно ведет к нарушению функционирования ЭТЦ и окислительного фосфорилирования.
На первый взгляд кажется, что скорость утечки свободных радикалов из ЭТЦ соответствует скорости клеточного дыхания, но это не так. Конечно, потребность в энергии и ее потреблении, работа разобщающих белков и другие переменные, привязанные к скорости клеточного дыхания, оказывают влияние на скорость выделения свободных радикалов, но в конечном счете она зависит от доступности электронов (и кислорода).
Мы знаем, что основной причиной разрушения митохондрий являются свободные радикалы, генерируемые самими митохондриями. Результаты недавних исследований говорят о том, что бо́льшая их часть производится комплексами I и III. Комплекс I производит свободные радикалы, если на его электроны нет спроса, а комплекс III делает это, когда АТФ не используется клеткой с достаточно быстрой скоростью.