Рассмотрев тему «спроса и предложения», мы должны вновь обратиться к компонентам ЭТЦ. Каждый из них может быть либо восстановлен (приобрести один электрон или несколько электронов), либо окислен (потерять один или несколько электронов), но не может одновременно и восстанавливаться, и окисляться. В митохондриях эукариот процесс переноса электронов начинается с окисления НАДН и восстановления убихинона (кофермента Q) комплексом I. Далее комплекс II окисляет сукцинат до фумарата и восстанавливает убихинон Q. Комплекс III переносит электроны от восстановленного убихинона к цитохрому
Утрата этого баланса не только замедляет окислительное фосфорилирование и производство энергии, но также может привнести хаос в жизнедеятельность митохондрий. Эта опасность связана с тем, что переносчики электронов в ЭТЦ характеризуются реактивностью. Если поток электронов в ЭТЦ течет в нормальном режиме, то каждый опорный пункт в большинстве случаев успешно передает электроны другому такому пункту, который желает их чуть сильнее, чем предыдущий обладатель. Однако, так как переносчики электронов не могут одновременно восстанавливаться и окисляться, если следующий по цепи переносчик уже имеет лишний электрон и еще не успел от него освободиться, то в ЭТЦ возникает затор. Создание затора и выпадение электрона из общего движения подобно ситуации, когда один поезд еще не покинул станцию вовремя, и следующий за ним состав не может попасть туда. Наиболее вероятный вариант в таком случае — транспортная пробка. В результате возникает вероятность преждевременного перехода блокированного электрона на кислород. Когда кислород получает электрон от любого носителя, кроме комплекса IV (последний комплекс в ЭТЦ), то формируется известный нам токсичный свободный радикал — супероксид. Это необязательно ведет к отрицательным последствиям (как я покажу ниже), но сейчас давайте условимся, что супероксид, как правило, приносит вред всем видам биологических молекул. Продолжая аналогию с пробкой из поездов, представим, что приближающийся локомотив не получил сигнал о том, что другой состав застрял на станции, а машинист не успел ударить по тормозам. В этом случае поезда сталкиваются и их вагоны сходят с рельсов, причиняя окружающей среде всевозможный ущерб.
Поддержание динамического равновесия восстановительно-окислительных реакций не только обеспечивает быстрое и эффективное движение электронов по ЭТЦ, но и снижает риск формирования свободных радикалов в форме супероксидов. Сохранение этого баланса также зависит от количественного соотношения между собой разных категорий транспортеров электронов (включая промежуточные переносчики). Например, если в митохондрии присутствует переизбыток комплексов I, принимающих электроны от НАДН, но нет соответствующего им количества коферментов Q, многие из несчастных обладателей электронов, не имея возможности их передать, просто потеряют своих подопечных, после чего бедняг захватит хищный кислород. Конечно, как и во всех других случаях, связанных с живыми организмами, соотношение переносчиков ЭТЦ постоянно изменяется (какое-то их количество изнашивается, заменяется и т. д.).
Экстремальный сигнал: плюс свободных радикалов