Что ж, теперь, после того как мы прошли по обходным дорогам научных рассуждений, у нас есть возможность сделать важный шаг к ответу на вопрос: зачем митохондриям вообще какие-либо гены? Давайте представим гипотетическую клетку, в которой находится тысяча митохондрий, каждая из которых включает в себя по десять тысяч ЭТЦ. Предположим, одна из этих митохондрий лишена достаточного количества комплексов IV — последних передатчиков электронов в электротранспортной цепи. Это значит, что в митохондрии процесс окислительного фосфорилирования останавливается, а в ЭТЦ возникает затор электронов. В результате электроны сбиваются с пути и формируют супероксиды, а сама митохондрия подвергается опасности необратимого разрушения. Логичным выходом из такого положения был бы синтез недостающих комплексов IV. Но как митохондрия сигнализирует о том, что ей требуется больше комплексов IV? В качестве такого сигнала выступают сами свободные радикалы. Несмотря на всю их вредоносность, именно они способны контролировать деятельность чувствительных к окислительно-восстановительным реакциям факторов транскрипции, которые активируются в ответ на окисление свободными радикалами. В свою очередь, эти факторы транскрипции вносят коррективы в генную активность, направленную на производство новых комплексов IV.
Некоторые из читателей могут спросить: откуда клетка знает, что активность свободных радикалов — это сигнал, указывающий на дефицит комплексов IV? В конце концов, низкая потребность в энергии или недостаток кислорода тоже могут стать причиной появления свободных радикалов! А ведь в обоих случаях синтез дополнительных комплексов IV не позволит исправить ситуацию. Дело в том, что клетка рассматривает сообщение от свободных радикалов в контексте общего положения вещей, так же как мы, люди, воспринимаем любое высказывание в ходе беседы, сопоставляя его с другими единицами информации. В нашем случае базовой единицей контекста является уровень концентрации АТФ в клетке. Недостаток комплексов IV в митохондриях приводит к падению уровня АТФ (работа ЕТЦ прекращается вместе с остановкой переноса электронов). Отсюда следует, что резкое увеличение количества свободных радикалов побуждает транскрипционные факторы активировать гены, синтезирующие комплексы IV, в том случае, если оно сочетается с падением уровня АТФ. И наоборот, если клетка фиксирует высокий уровень АТФ, сопровождаемый взрывным увеличением числа свободных радикалов, значит, требуется понижение протонного градиента (и, возможно, более активного синтеза разобщающих белков, о которых мы поговорим далее).
Представим на мгновение, что все гены находятся в ядре. После сигнала о «наступлении» свободных радикалов ядро посылает приказ об ускорении производства комплексов IV. Затем оно метит новорожденные белки с помощью других белков для того, чтобы они могли найти путь обратно в митохондрию. Однако все, чем могут помочь метки, — направить комплексы IV к митохондриям без знания о том, какие именно из потенциальных пунктов назначения нуждаются в них. Это похоже на ситуацию, при которой вы посылаете письмо другу в другой город без указания адреса. Вряд ли такое письмо дойдет до вашего друга. Кроме того, учитывая тот факт, что митохондрии находятся в состоянии постоянной турбулентности (они могут разрушаться, делиться на две или соединяться в одну), система не была бы особенно эффективной, даже если бы ядро передавало новым комплексам IV точный адрес их митохондрий: на момент прибытия к цели этот адрес вполне может исчезнуть!
Итак, в нашей гипотетической ситуации новые комплексы IV равномерно распределились бы среди всей тысячи находящихся в клетке митохондрий. В результате действительно нуждающаяся в них митохондрия, которая и посылала изначальный запрос, не получает нужного количества комплекса IV, а остальные получают ненужные им белки (и, соответственно, отправляют в ядро сообщение о прекращении синтеза комплексом IV). Мораль этого мысленного эксперимента такова: если митохондрии не контролируют собственную судьбу, то вся клетка неизбежно будет испытывать трудности с производством энергии.
Теперь рассмотрим другой сценарий, при котором гены, синтезирующие комплекс IV, находятся в митохондрии (как это и происходит в реальности). В этом случае сигнал о взрывном увеличении числа свободных радикалов и необходимости синтеза комплексов IV поступает прямо в митохондриальную ДНК, которая находится в непосредственной близости от источника сигнала (ответ приходит очень быстро). Собственные гены митохондрии инструктируют ее же рибосомы синтезировать больше комплексов IV, которые немедленно инкорпорируются в ЭТЦ, устраняя заторы в цепи переноса электронов и восстанавливая нормальный процесс окислительного фосфорилирования. Соответственно, если (когда) идет сигнал об остановке синтеза комплексов IV, он не выходит за пределы митохондрии, а реакция на него мгновенна.