В ходе нормального окислительного фосфорилирования 0,4–4,0 % используемого в митохондриях кислорода превращается в супероксиды. Клетка защищается, и супероксиды превращаются в пероксид водорода (H2
O2) под воздействием пероксиддисмутазы[7]. Затем пероксид водорода превращается в воду посредством глутатионпероксидазы (одного из основных ферментов-антиоксидантов) или пероксиредоксина III[8]. Однако если эти ферменты не могут достаточно быстро расщепить свободные радикалы и «низвести» их до уровня воды (или когда синтез супероксидов приобретает лавинообразный характер), митохондрии начинают мутировать, а мутации — накапливаться.Результаты лабораторных исследований показывают, что свободные радикалы разрушают железосерные кластеры, находящиеся в
Как бы то ни было, все это зависит от доступности клеточного топлива и кислорода. Представим себе человека из бедной голодающей страны. Этот человек испытывает недостаток в пище, и, соответственно, в ЭТЦ его митохондрий практически прерывается поток электронов. Поэтому, несмотря на изобилие кислорода, в его организме формируется очень мало супероксидов (им нужны электроны).
Теперь представим себе тренировку качественно питающегося элитного атлета. Клетки его мышц наполнены топливом, но испытывают сильную потребность в энергии. Поток электронов мощно и ровно течет по ЭТЦ, практически не покидая ее пределов (АТФ постоянно идут «в дело»), а значит, сводя почти к нулю количество свободных радикалов.
Но что происходит с человеком, который регулярно поглощает много пищи и ведет сидячий образ жизни? Митохондрии его организма получают большое количество питательных веществ, но синтезируемая ими АТФ не используется клеткой. В этом случае обмен веществ замедляется при высокой концентрации АТФ, а в ЭТЦ образуются заторы из электронов. В результате избыток кислорода сочетается с множеством высоко реактивных электронов, что приводит к быстрому формированию супероксидов. Лавина свободных радикалов сметает антиоксидантную защиту и окисляет липиды митохондриальных мембран. В результате цитохром
После выработки энергии наиболее важной функцией митохондрий является регуляция процесса умирания. Когда клетки нашего организма изнашиваются или им наносится невосполнимый ущерб, они совершают клеточный суицид, или апоптоз. Неполадки в регулирующих апоптоз механизмах влекут за собой серьезные последствия, одним из которых является возникновение злокачественной опухоли. Поэтому апоптоз представляет собой критически важный фактор целостности и правильной организации многоклеточного организма. Он контролируется митохондриями.
С генетической точки зрения многоклеточные организмы состоят из идентичных клеток, выполняющих конкретные задачи во имя организма, включая и задачу самоликвидации. Такая ситуация уникальна в живой природе — ведь живые существа характеризуются врожденным желанием выжить любой ценой. Тогда возникает вопрос, как и когда клетки многоклеточного организма начали в большинстве случаев послушно подчиняться распоряжению центра совершить суицид ради благополучия целого организма? Вероятнее всего, этот процесс продолжался сотни миллионов лет, а в качестве проводников такого альтруистического поведения выступили митохондрии, без которых многоклеточные организмы были бы буквально нашпигованы опухолями и погибали бы от рака в самом начале своего развития.