Читаем Эйнштейн. Теория относительности полностью

Карл Фридрих Гаусс (1777-1855) по масштабу своего мышления может сравниться разве что с Ньютоном или Архимедом. Некоторые из самых значительных его открытий, такие как неевклидова геометрия и алгебра комплексных чисел, не были опубликованы, чтобы избежать научных споров. Гаусс мог себе это позволить: напечатанной части его работ было достаточно, чтобы произвести переворот в математике. Риман обобщил идеи Гаусса в дифференциальной геометрии. В 1854 году он прочитал лекцию на эту тему, завершив выступление словами: «Это приводит нас в сферу другой науки, физики, куда сегодня мы не можем углубиться». Риман остановился на границе, которую осмелился пересечь только Альберт Эйнштейн, родившийся четверть века спустя. Однако познать тайну строения космоса ему помогли разработанные Риманом математические инструменты.



До начала XIX века и публикации работы Гаусса «Общие исследования о кривых поверхностях» двумерные пространства рассматривались с трехмерной перспективы, словно со стороны. Заслуга Гаусса состоит в том, что он погрузился в саму поверхность, сталкиваясь, по мере своего продвижения, с различными новыми задачами. Это воображаемое путешествие стало первым шагом в изучении внутренней геометрии поверхностей, которая получила мощный толчок в развитии благодаря одному из учеников Гаусса, Бернхарду Риману (1826-1866).

Когда речь идет о плоскости, кажется разумным экстраполировать свойства небольшого участка на другие, близкие ему. Однообразие плоскости подразумевает, что все ее участки идентичны. Однако в более сложной среде каждая неровность становится новой точкой отсчета. Мы различаем возвышения и углубления, и особенности одного участка плоскости нельзя приписать другому ее участку. Следовательно, чтобы изобразить внутреннюю структуру поверхности, мы должны составить карту всей ее площади.

Для того чтобы это сделать, Гаусс обратил внимание на то, что произойдет, если мы возьмем любую точку на поверхности и немного продвинемся от нее в случайном направлении. Если мы находимся на плоской поверхности, такой, например, как пол в доме, то в каком бы направлении мы ни двигались, пройденный путь будет равен расстоянию до точки. Но на изогнутой поверхности все оказывается сложнее. Двинувшись направо, мы, возможно, спустимся вниз, а повернув налево, можем обнаружить крутой подъем.

В качестве примера рассмотрим положение двух людей на рисунке со следующей страницы. Оба двигаются от точки А к точке В, расположенной неподалеку. Первый человек идет по прямой линии на плоском участке, а второй движется в углублении. Чтобы дойти от А до В, второй человек должен пройти больше, чем первый, из-за геометрической кривизны участка (рисунок 10). И для каждого из них расстояние от А до В будет разным.


РИС. 10


РИС. 11


РИС. 12


Гаусс ввел новую математическую функцию, метрику (она обозначается буквой g), которая показывает расстояние до точки поверхности в зависимости от того, в каком направлении мы движемся. Как вы уже понимаете, на неровной поверхности эта информация от точки к точке меняется.

Метрику можно считать руководством по устройству поверхности, поскольку она содержит все интересующие нас данные. Когда рассматриваешь пространство из более высокого измерения, его неровности становятся заметны невооруженным взглядом, а метрическая функция позволяет нам оценить их, находясь непосредственно на поверхности.

Геометрические свойства поверхности должны быть независимы от системы координат, выбранной для ее описания, – так же, как в новостях, на какой бы язык мы их ни перевели, речь должна идти об одном и том же. Расстояние между двумя точками – это информация, которая не меняется с «переводом», то есть с изменением координат. Точки 1 и 2 находятся на разных расстояниях от точек А и В, но расстояние между ними самими не меняется, то есть, на языке алгебры, расстояние является инвариантом (рисунок 11). С помощью метрической функции возможно определить расстояние между любыми двумя точками на поверхности. Также она позволяет построить другие инварианты, например кривизну, то есть величину, выражающую, насколько отклоняется поверхность от евклидовой плоскости (рисунок 12).



Построение метрической функции


Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Жизнь: зарядное устройство. Скрытые возможности вашего организма
Жизнь: зарядное устройство. Скрытые возможности вашего организма

Стивен Рассел – автор 15 книг, большинство из которых стали бестселлерами, создатель популярного документального сериала для Би-би-си, продолжает лучшие традиции «босоногих докторов», которые бродили по странам Древнего Востока, исцеляя людей от физических и душевных недугов.Стивен Рассел долгое время изучал китайскую медицину, а также китайские боевые искусства, способствующие оздоровлению. Позже занялся изучением психиатрии в поисках способа совместить древние восточные методы и современную науку для исцеления нуждающих.Книги Стивена Рассела до предела насыщены мощными уникальными методиками оздоровления, самопомощи и самовосстановления, ведь его опыт поистине огромен. Вот уже более 20 лет он оказывает целительную помощь своим многочисленным пациентам: ведет частный прием, проводит семинары, выступает на радио и телевидении. Перевод: И. Мелдрис

Стивен Рассел

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Документальное
Зачем нужна геология: краткая история прошлого и будущего нашей планеты
Зачем нужна геология: краткая история прошлого и будущего нашей планеты

Каков риск столкновения астероида с Землей? Почему температура океана миллионы лет назад имеет значение сегодня? В увлекательном и доступном изложении Дуг Макдугалл дает обзор удивительной истории Земли, основанный на информации, извлеченной из природных архивов. Мы обнаруживаем, что наука о земле фактически освещает многие из наиболее насущных проблем сегодняшнего дня — доступность энергии, доступ к пресной воде, сельское хозяйство. Но более того, Макдугалл ясно дает понять, что наука также дает важные ключи к будущему планеты.Дуг Макдугалл — писатель, ученый-геолог и педагог. Почетный профессор в Институте океанографии Калифорнийского университета, где в течение многих лет преподавал и проводил исследования в области геохимии. Заядлый путешественник, его исследования провели его по всему миру, от Сибири и канадской Арктики до южной Индии, Китая и дна Тихого океана.

Дуг МакДугалл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература