Исходным пунктом генезиса атомной физики был периодический закон Менделеева. За сорок лет, прошедших с 1869 г. - года открытия периодического закона, - было сделано немало попыток физической интерпретации периодичности. Многие стремились объяснить, почему в ряду элементов, расположенных в порядке возрастания атомного веса, периодически, через определенное число элементов, повторяются химические свойства, появляются сходные по своим свойствам элементы. Открытие дискретных частей атома позволило решить задачу.
В 1911 г. Резерфорд своими экспериментами доказал, что атом состоит из ядра, находящегося в центре атома и занимающего ничтожную часть его объема, а также из отрицательно заряженных частиц - электронов, движущихся вокруг ядра. Эта первоначальная схема впоследствии стала более сложной. Был выяснен состав ядер:
516
в них находятся протоны, несущие положительный электрический заряд, и электрически незаряженные нейтроны. Орбиты электронов располагаются как бы слоями; близкие орбиты образуют оболочки атомов; в ряду все более тяжелых атомов, т.е. атомов, включающих все больше ядерных частиц и соответственно все большее число обращающихся вокруг ядра электронов, мы встречаем сначала одну оболочку, потом две и т.д. На внешней оболочке, при переходе к все более тяжелым атомам, мы встречаем один, два, три и т.д. электрона, потом, когда орбита заполнена, мы снова встречаем один, два и т.д. электрона на следующей оболочке. Каждая оболочка заполняется определенным числом электронов. Таким образом, в ряду все более тяжелых атомов через определенное число номеров встречаются атомы с тем же числом внешних электронов, т.е. электронов, находящихся на внешней оболочке. Поскольку химические и некоторые физические свойства элементов зависят от числа внешних электронов, эти свойства периодически повторяются.
Однако представление об электроне, обращающемся по орбите, не согласуется с законами электродинамики. Такой электрон должен излучать электромагнитные волны, которые постепенно будут уносить энергию электрона, и последний, двигаясь все медленнее, в конце концов не сможет противостоять притяжению ядра и упадет на ядро. Подобный вывод противоречит устойчивости атомов.
Чтобы выйти из наметившегося, очень тяжелого противоречия, Нильс Бор предположил, что электрон может двигаться лишь по некоторым определенным орбитам, которым соответствуют определенные значения энергии движущегося электрона. Находясь на орбите, электрон не излучает электромагнитных волн. Он излучает их, перескакивая с одной орбиты на другую. При этом энергия атома уменьшается на величину, равную разности между энергией, свойственной покинутой орбите, и энергией, свойственной достигнутой орбите. Энергия эта уносится электромагнитным излучением. Электромагнитное излучение состоит из открытых Эйнштейном квантов света - фотонов. Переход электрона на другую орбиту вызывает излучение фотона.
517
На Эйнштейна произвела очень сильное впечатление блестящая интуиция Бора, выдвинувшего свои постулаты задолго до того, как они могли быть выведены сколько-нибудь строгим образом из более общих допущений, и исходившего из крайне отрывочных и, как казалось, не связанных друг с другом экспериментальных данных. Вплоть до середины двадцатых годов идея квантования излучения и существования квантов света представлялась крайне зыбкой почвой для развития физики. Классические основы физики были подорваны этой идеей, но на смену им еще не пришли новые фундаментальные законы механики и электродинамики.
"Это было так, - вспоминает Эйнштейн, - точно из-под ног ушла земля и нигде не было видно твердой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы позволить Бору - человеку с гениальной интуицией и тонким чутьем - найти главнейшие законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это кажется мне чудом и теперь. Это наивысшая музыкальность в области мысли" [1].
"Наивысшая музыкальность" - это интуиция, связывающая внешнее оправдание с еще не достигнутым внутренним совершенством. Теория Бора, его парадоксальные постулаты о движении электронов по орбитам без излучения были примером подобной интуиции.
Понимание этой интуиции, оценка, которую Эйнштейн дал в те годы теории Бора, проливают свет на самые основные черты и стиль эйнштейновской мысли. Симпатии Эйнштейна отнюдь не принадлежали новой теории, ее характер противоречил тому, что Эйнштейн считал идеалом физики. В 1961 г. в Москве, в Институте физических проблем, Нильс Бор вспоминал первую реакцию Эйнштейна на боровскую модель атома. Эйнштейн сказал: "Что же, все это не так далеко от того, к чему мог бы прийти и я. Но если все это правильно, то здесь - конец физики" [2].
1 Эйнштейн, 4, 275.
2 См.: Наука и жизнь, 1961, № 8, с. 77.