Такая точка зрения вызывала возражения со стороны ряда крупнейших физиков-теоретиков, которых Макс Борн назвал впоследствии "ворчунами". Первая широкая дискуссия развернулась на Сольвеевском конгрессе в 1927 г. Среди "ворчунов" наиболее активным и глубоким критиком квантовой механики (вернее, ее вероятностного понимания) был Эйнштейн. На Сольвеевском конгрессе и позже в печати Эйнштейн доказывал, что соотношение неопределенности не дает полного представления о физической реальности. Нильс Бор, Вернер Гейзенберг, Макс Борн и другие парировали удары, наносимые утверждению о статистических закономерностях как об исходных закономерностях мира. Дискуссия осложнялась попытками философов-позитивистов представить переход от динамической формы детерминизма к статистической его форме в квантовой механике как отказ от какого бы то ни было детерминизма вообще, как признание индетерминизма в природе.
Заметим, что идея "волн вероятности" принадлежала в некоторой мере самому Эйнштейну. В своей теории квантов света он но существу соединил волновое и корпускулярное представление о свете. Свет - это волны, обладающие некоторой энергией, причем в единичном объеме пространства содержится определенное количество энергии световых волн; пространство, которое проходит световой луч, характеризуется известной плотностью энергии электромагнитных волн. Но свет - это частицы, фотоны. В корпускулярном представлении пространство, через которое проходит луч, характеризуется средней плотностью фотонов. Значит, средняя плотность фотонов (пропорциональная вероятности встречи с фотоном: чем вероятнее встреча, тем больше фотонов мы встретим) означает - при переходе к волновому представлению - плотность энергии, т.е. интенсивность колебаний электромагнитного поля. Эти колебания, распространяясь в пространстве, образуя электромагнитные волны, опреде
523
ляют вероятность встречи с фотоном. Подобное представление логически вытекало из учения Эйнштейна о фотонах. В квантовой механике, созданной в 1925-1926 гг., речь первоначально шла об электроне. Вероятность встречи с ним, вероятность его пребывания в данном объеме определяются уже не электромагнитными волнами, а "волнами материи", о которых говорил Луи де Бройль и которые Макс Бори рассматривал как волны вероятности.
Ту роль, которую при определении движения электрона играет волновое уравнение Шредингера (с его помощью можно определить вероятность местонахождения электрона), в оптике играет волновое уравнение, позволяющее определить движение фотонов. В этом смысле в эйнштейновской теории фотонов уже содержались основные коллизии квантовой механики. Свет состоит из частиц. С другой стороны, абсолютно достоверные опыты убеждают в том, что свет - это электромагнитные волны. Более того, вывод Эйнштейна об интенсивности электромагнитных волн, пропорциональной плотности фотонов, наталкивает на ту мысль, что интенсивность электромагнитной волны соответствует вероятности нахождения фотона в данной точке, на мысль об электромагнитных волнах как волнах вероятности встречи с фотоном. Эйнштейн не соглашался с представлением о волнах вероятности, т.е. о некоторой закономерности, определяющей лишь вероятность фактов, как о наиболее общей закономерности микромира. Но именно к этому выводу вела и привела в конце концов выдвинутая им теория.
Сейчас, ретроспективно оценивая идею фотонов, мы находим в ней еще более радикальный отход от основ классической картины мира. Эйнштейн в отличие от Планка говорил о дискретности энергии электромагнитного поля не только при его излучении и поглощении, но и между этими процессами. Поле по своей природе дискретно ("пиво не только продается пинтовыми бутылками, но и состоит из пинтовых неделимых порций, находясь в бочонке"). Довольно естественным обобщением этой мысли служит представление о том, что все поля дискретны, что мы можем описывать поле, действующее на частицу, с точностью до некоторой далее неделимой величины. Классическая физика исходит из того, что поведение частиц определяется их взаимодействием, иначе го
524
воря, некоторыми силовыми полями, порождаемыми частицами и воздействующими на них. Если очистить классическую механику от иных воздействующих на частицы сил (например, сил инерции, вызванных не взаимодействием тел, а абсолютным ускорением системы), т.е. приблизить ее к "классическому идеалу", то мы получим Вселенную, в которой взаимодействия частиц определяют все, что в ней происходит.