Читаем Эйнштейн: Жизнь, смерть, бессмертие полностью

Даже в устах Эйнштейна эта реплика поражает своей емкостью - обилием, общностью и глубиной содержащихся в ней мыслей: "Все это не так далеко от того, к чему мог бы прийти и я". Квантовая теория подвела физику к

518

новой картине движения электронов в атоме. Картина эта оказалась парадоксальной. Эйнштейн увидел или интуитивно почувствовал, что объяснение парадоксальных постулатов Бора приведет к еще более общим парадоксам, что они сломают или ограничат ту идеальную, стройную и рациональную картину мира, которая просвечивала через строки философских трактатов Декарта и Спинозы, получила мощную опору (но вместе с ней чуждые такой картине абсолюты) в механике Ньютона и в конце концов приобрела гармоничную форму в теории относительности Эйнштейна. Разработка такой картины была для Эйнштейна сущностью физики. Поэтому он говорил о теории Бора: "Если все это правильно, то здесь - конец физики". В годы, когда модель атома Бора обсуждали с самых различных сторон (например, со стороны ее применимости к атомам, более сложным, чем атом водорода), Эйнштейн увидел в новой теории гораздо более общую и глубокую черту - крушение или по крайней мере ограничение того идеала, который в глазах творца теории относительности был опорой самого существования физики.

Бора, напротив, в теории фотонов и в его собственных конструкциях привлекала именно эта тенденция, нарушающая строгие каноны классического идеала. Его интуиция непосредственно вела не к разрушению классического идеала, а, если можно так выразиться, к смягчению и размыванию тех очертаний, в которых он был воплощен. Бора недаром называют мастером полутени - "Рембрандтом физики", имея, впрочем, в виду позднейшие идеи, размывавшие строгий и точный рисунок классической пауки. Можно было сопоставить Бора и с теми художниками начала XIX столетия, которые вслед за Гойей отказались от унаследованного от двух прошлых столетий идеала ясности в живописи.

В двадцатые годы постулаты Бора - существование дискретных разрешенных орбит и отсутствие излучения у движущихся по таким орбитам электронов перестали считаться парадоксальными. Была создана новая общая теория, в свете которой постулаты получили рациональное объяснение. Зато самая теория была более парадоксальной, чем все ранее известное науке. Исходным пунктом этой новой конструкции оказалась не дуалистическая - волновая и вместе с тем корпускулярная - природа света, а противоречивая в таком же смысле природа электрона.

519

В двадцатые годы кризис квантовой физики, выразившийся в длительных и весьма мучительных поисках более общей теории, из которой бы вытекала модель атома Бора, закончился серией открытий, начавших новую эпоху в физике. В 1923-1924 гг. Луи де Бройль ввел в физику совершенно новое понятие волн материи. Движение материальной частицы - электрона - связано с неким волновым процессом. Электрон может обращаться по такой орбите, на которой укладывается целое число воли. Это и есть "разрешенная" боровская орбита. Движение частицы подчинено законам распространения волн. Так появилась волновая механика. Эрвин Шредингер в 1925 г. написал уравнение, позволяющее найти амплитуду некоторых колебаний - волновую функцию. Решение уравнения дает дискретный ряд значений энергии. Эти значения указывают энергию атома в разных состояниях, соответствующих движению электронов на определенных орбитах.

Что же такое волновая функция? Каков физический смысл величины, колебания которой определяют поведение электрона?

Ответ был дан Максом Борном: речь идет о вероятности встречи с электроном. Если мы вычислим значение волновой функции для определенной точки и для определенного момента, то это значение (вернее, квадрат его абсолютной величины) будет мерой вероятности нахождения электрона в данной точке в данный момент.

Макс Борн и Паскуаль Иордан сопоставили интенсивность волн де Бройля (чисто волновое представление) и среднее число электронов в единице объема пространства (чисто корпускулярное представление). Связь волнового представления с корпускулярным получает при таком сопоставлепии следующий вид.

Мы говорили о среднем числе электронов в данном объеме, среднем для большого числа подсчетов. Подобным же образом можно сказать, что при бросании монеты на каждые десять бросаний в среднем выходит пять выпадений стороны с гербом. Это среднее значение соответствует вероятности: вероятность выпадения герба, т.е. вероятность увидеть на монете герб после каждого ее бросания, равна половине, следовательно, число выпадений герба и среднем будет соответствовать половине бросаний монеты.

520

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже